浅议激光的生物学效应及生物物理机理探讨
若水1147由 分享
时间:
论文关键词:激光 激光生物效应 激光与生物分子
论文摘要:本文主要简介了激光与生物组织相互作用所产生的生物效应,概述激光与生物分子相互作用机理研究现状。为提高和发展激光技术在此领域的应用,有必要对激光的生物学效应及生物物理机理进行研究。
一、激光的发光原理及其生物学效应
1激光发光原理
把一段激活物质放在两个互相平行的反射镜构成的光学谐振腔中,处于高能级的粒子会产生各种方向的自发发射。其中,非轴向传播的光波很快逸出谐振腔外,轴向传播的光波却能在腔内往返传播,当它在激光物质中传播时,光强不断增强。如果谐振腔内单程小信号增益G0l大于单程损耗δ,则可产生自激振荡。原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子即自发辐射。同样的,当一个光子入射到一个能级系统并为之吸收的话,会导致原子从低能级向高能级跃迁即受激激吸收。然后,部分跃迁到高能级的原子又会跃迁到低能级并释放出光子即受激辐射。这些运动不是孤立的,而往往是同时进行的。当我们创造一种条件,譬如采用适当的媒质、共振腔、足够的外部电场,受激辐射得到放大从而比受激吸收要多,就会有光子射出,从而产生激光。
2激光生物学效应
由于激光具有能量和动量,激光作用于生物分子,就有可能使生物分子产生物理、化学或生物反应,这就是激光生物效应。目前,学术界认识比较一致的激光生物效应大致有五类:.激光生物热效应、激光生物光华效应、激光生物压力效应、激光生物电磁效应和激光生物刺激效应。生物组织内的天然色素颗粒,对近紫外、可见光和近红外光谱区的激光有选择吸收作用。激光生物效应,目前已经在激光医疗、激光育种方面得到广泛、有效的应用。
(1)激光生物热效应
激光照射生物组织时,激光的光子作用于生物分子,分子运动加剧,与其他分子的碰撞频率增加,由光转化为分子的动能后变成热能,可能会引起蛋白质变性,生物组织表面收缩、脱水、组织内部因水分蒸发而受到破坏,造成组织凝固坏死。当局部温度急剧上升达几百度甚至上千度时,可以造成照射部分碳化或汽化。在照射生物组织时,不同波长的激光产生热效应的机制也不尽同。红外激光的光子能量小,生物组织吸收后只能增加生物分子的热运动导致温度升高,所以它是直接生热可见光和紫外光的光子能量大,生物组织吸收了光子能量后引起生物分子电子态跃迁,在它从电子激发态回到基态的驰豫过程中释放能量,该能量可能引起光化反应,也可能转化为热量产生温度升高,所以它们是间接生热。激光热效应究竟应表现为哪种形式,在激光方面取决于其输出参数、作用时间,在生物组织方面则取决于其光学、热学特性等诸多因素。
热效应是激光致伤的最重要因素。激光损伤区与正常组织的界缘十分清楚,这是由于激光脉冲时程短,生物组织的导热性差,瞬间放热来不及扩散到受照射部位以外的缘故。辐照后,由于继变化,如炎症、出血、再生等,会使原初清楚的损伤界缘逐渐变得模糊。
(2)激光生物光华效应
当一个处于基态的分子吸收了能量足够大的光子以后,受激跃迁到激发态,在它从激发态返回到基态,但又不返回其原来分子能量状态的弛豫过程中,多出来的能量消耗在它自身的化学键断裂或形成新键上,其发生的化学反应即为原初光化学反应,在原初光化学反应过程中形成的产物,大多数极不稳定,它们继续进行化学反应直至形成稳定的产物,这种光化反应称为继发光化反应,前后两种反应组成了一个完整的光化反应过程,这一过程大致可分为光致分解、光致氧化、光致聚合及光致敏化四种主要类型,光致敏化效应又包括光动力作用和一般光敏化作用。生物的光华效应产生的根本是生物的而组织有一定的色度,能选择性地吸收300~1000nm光谱。生物体内的色素有黑色素和类黑色素、血红蛋白、胡萝卜素、铁质等,其中黑色素对激光能量的吸收最大。脱氧血红蛋白在556nm,氧合血红蛋白在415、542、575nm处有清楚的吸收带,胡萝卜素吸收带在480nm处,黑色素和类黑色素在400~450nm波段吸收最强。无论是正常细胞还是肿瘤细胞,在细胞质和细胞间有许多黑色素颗粒,它们吸收激光能量使能量在色素颗粒上积聚而成为一个热源,其能量向周围传导和扩散,从而引起周围组织细胞损伤。
(3)激光生物压力效应
由激光照射产生的机械作用可分为两部分:激光本身的辐射压力对生物组织产生的压强,即光压,称作一次压强;生物组织吸收强激光造成的热膨胀和相变以及超声波、冲击波、电致伸缩等引起的压强,叫二次压强。由激光导致的生物细胞的压强的变化可以改变生物细胞、组织的形状,使得生物细胞、组织内部或之间产生机械力,从而对生物细胞、组织产生巨大的影响。由这种作用产生的冲击波是激光致伤的另一原因。冲击波在组织中以超声速运动,在组织中产生空穴现象,引起组织破坏。戈尔德曼指出:脉冲时程50毫微秒的Q开关激光产生的冲击波压力,可大于10个大气压。实际上,激光热效应影响范围十分局限,而由压力效应引起的组织损伤,则可波及到远离受照区的部位。例如,用红宝石激光照射小鼠头部时,发现头皮轻度损伤,颅骨和大脑硬膜并无损伤,而大脑本身却大面积出血,甚至造成死亡。
二、激光与生物分子相互作用机理研究现状
20世纪八十年代以来,由前苏联、匈牙利等国的专家提出了不少假说,其中常见的有下列4种:生物电场假说(前苏联伊柳辛提出);色素调节假说(前苏联伽马列亚于1981年提出);细胞膜受体假说(前苏联普鲁哈丘科夫于1980年提出):偏振刺激假说(梅斯特1977年提出)。另外一个假说是:由孤子状态进入混沌状态假说。美国Englander(1980年)、日本的Jomosa(1984年)。
中国的肖家鑫(1987年)用孤子理论对DNA的复制、转录等遗传功能作出过解释。刘颂豪(1991年)也提出了生物学过程中的孤子现象。云南理工大学的周凌云对“由孤子状态进入混沌状态假说”的进一步发展作出了贡献。激光生物物理学家王惠文在其所著的《激光与生命科学》一书中介绍了周凌云的研究成果:“周凌云(1993)提出,在弱激光的作用下,DNA分子系统可进入‘无序’的混沌状态,并根据DNA分子动力学方程(Sine一Gordon方程)的分析结果,可以解释DNA的真实遗传,从而导出含激光一DNA分子动力学的运动方程,以及激光的电场相互作用对DNA分子系统的动力学效应。通过含激光与DNA相互作用运动方程的M.Inikov方法或知DNA系统即使在弱激光的作用下,也有可能由原来的孤立子运动状态进入混沌状态。从而导致其构象随时间‘无规则’地演化产生遗传变异’。但由于激光的生物刺激和诱变等效应作用机理的复杂性,特别是弱激光与生物分子的相互作用机理,目前尚未得出完善的科学解解释。
激光与生物组织的相互作用很复杂,有待进一步研究。激光生物效应分类还没有明确的界限,如在光化效应中光热效应也起了很大的作用,电磁作用也产生热效应和机械作用等,激光热作用、光化作用和机械作用通常是同时发生的,所以相互作用的分类并不是绝对的,但各种作用之间也确存在着一些差别。如每种效应都具有典型的激光及典型现象等。激光与生物组织的相互作用是一个多种因素决定的复杂过程,激光的参数(如波长、功率、激光模式等)、生物组织的性质(如密度、弹性、热导率、比热、热扩散率、反射率、吸收率、不均匀性和层次结构)以及生物体状态等对激光的生物效应都有影响。激光对生物组织的作用具有有利和不利两个方面,要想利用激光,最首要的任务是认识并理解激光与生物组织的相互作用机理,然后才能加以应用。
参考文献:
[1]周炳琨,高以智等.激光原理[M].第五版.北京:国防工业出版社,2007.14-23
[2]李海涛,杨继庆.激光生物效应及医学应用研究[J].第四军医大学报,2007,28(14).
[3]杨继庆,刘鲁伟,文峻.激光生物组织热作用的影响因素[J].激光杂志,2005,26(5):94.
论文摘要:本文主要简介了激光与生物组织相互作用所产生的生物效应,概述激光与生物分子相互作用机理研究现状。为提高和发展激光技术在此领域的应用,有必要对激光的生物学效应及生物物理机理进行研究。
一、激光的发光原理及其生物学效应
1激光发光原理
把一段激活物质放在两个互相平行的反射镜构成的光学谐振腔中,处于高能级的粒子会产生各种方向的自发发射。其中,非轴向传播的光波很快逸出谐振腔外,轴向传播的光波却能在腔内往返传播,当它在激光物质中传播时,光强不断增强。如果谐振腔内单程小信号增益G0l大于单程损耗δ,则可产生自激振荡。原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子即自发辐射。同样的,当一个光子入射到一个能级系统并为之吸收的话,会导致原子从低能级向高能级跃迁即受激激吸收。然后,部分跃迁到高能级的原子又会跃迁到低能级并释放出光子即受激辐射。这些运动不是孤立的,而往往是同时进行的。当我们创造一种条件,譬如采用适当的媒质、共振腔、足够的外部电场,受激辐射得到放大从而比受激吸收要多,就会有光子射出,从而产生激光。
2激光生物学效应
由于激光具有能量和动量,激光作用于生物分子,就有可能使生物分子产生物理、化学或生物反应,这就是激光生物效应。目前,学术界认识比较一致的激光生物效应大致有五类:.激光生物热效应、激光生物光华效应、激光生物压力效应、激光生物电磁效应和激光生物刺激效应。生物组织内的天然色素颗粒,对近紫外、可见光和近红外光谱区的激光有选择吸收作用。激光生物效应,目前已经在激光医疗、激光育种方面得到广泛、有效的应用。
(1)激光生物热效应
激光照射生物组织时,激光的光子作用于生物分子,分子运动加剧,与其他分子的碰撞频率增加,由光转化为分子的动能后变成热能,可能会引起蛋白质变性,生物组织表面收缩、脱水、组织内部因水分蒸发而受到破坏,造成组织凝固坏死。当局部温度急剧上升达几百度甚至上千度时,可以造成照射部分碳化或汽化。在照射生物组织时,不同波长的激光产生热效应的机制也不尽同。红外激光的光子能量小,生物组织吸收后只能增加生物分子的热运动导致温度升高,所以它是直接生热可见光和紫外光的光子能量大,生物组织吸收了光子能量后引起生物分子电子态跃迁,在它从电子激发态回到基态的驰豫过程中释放能量,该能量可能引起光化反应,也可能转化为热量产生温度升高,所以它们是间接生热。激光热效应究竟应表现为哪种形式,在激光方面取决于其输出参数、作用时间,在生物组织方面则取决于其光学、热学特性等诸多因素。
热效应是激光致伤的最重要因素。激光损伤区与正常组织的界缘十分清楚,这是由于激光脉冲时程短,生物组织的导热性差,瞬间放热来不及扩散到受照射部位以外的缘故。辐照后,由于继变化,如炎症、出血、再生等,会使原初清楚的损伤界缘逐渐变得模糊。
(2)激光生物光华效应
当一个处于基态的分子吸收了能量足够大的光子以后,受激跃迁到激发态,在它从激发态返回到基态,但又不返回其原来分子能量状态的弛豫过程中,多出来的能量消耗在它自身的化学键断裂或形成新键上,其发生的化学反应即为原初光化学反应,在原初光化学反应过程中形成的产物,大多数极不稳定,它们继续进行化学反应直至形成稳定的产物,这种光化反应称为继发光化反应,前后两种反应组成了一个完整的光化反应过程,这一过程大致可分为光致分解、光致氧化、光致聚合及光致敏化四种主要类型,光致敏化效应又包括光动力作用和一般光敏化作用。生物的光华效应产生的根本是生物的而组织有一定的色度,能选择性地吸收300~1000nm光谱。生物体内的色素有黑色素和类黑色素、血红蛋白、胡萝卜素、铁质等,其中黑色素对激光能量的吸收最大。脱氧血红蛋白在556nm,氧合血红蛋白在415、542、575nm处有清楚的吸收带,胡萝卜素吸收带在480nm处,黑色素和类黑色素在400~450nm波段吸收最强。无论是正常细胞还是肿瘤细胞,在细胞质和细胞间有许多黑色素颗粒,它们吸收激光能量使能量在色素颗粒上积聚而成为一个热源,其能量向周围传导和扩散,从而引起周围组织细胞损伤。
(3)激光生物压力效应
由激光照射产生的机械作用可分为两部分:激光本身的辐射压力对生物组织产生的压强,即光压,称作一次压强;生物组织吸收强激光造成的热膨胀和相变以及超声波、冲击波、电致伸缩等引起的压强,叫二次压强。由激光导致的生物细胞的压强的变化可以改变生物细胞、组织的形状,使得生物细胞、组织内部或之间产生机械力,从而对生物细胞、组织产生巨大的影响。由这种作用产生的冲击波是激光致伤的另一原因。冲击波在组织中以超声速运动,在组织中产生空穴现象,引起组织破坏。戈尔德曼指出:脉冲时程50毫微秒的Q开关激光产生的冲击波压力,可大于10个大气压。实际上,激光热效应影响范围十分局限,而由压力效应引起的组织损伤,则可波及到远离受照区的部位。例如,用红宝石激光照射小鼠头部时,发现头皮轻度损伤,颅骨和大脑硬膜并无损伤,而大脑本身却大面积出血,甚至造成死亡。
二、激光与生物分子相互作用机理研究现状
20世纪八十年代以来,由前苏联、匈牙利等国的专家提出了不少假说,其中常见的有下列4种:生物电场假说(前苏联伊柳辛提出);色素调节假说(前苏联伽马列亚于1981年提出);细胞膜受体假说(前苏联普鲁哈丘科夫于1980年提出):偏振刺激假说(梅斯特1977年提出)。另外一个假说是:由孤子状态进入混沌状态假说。美国Englander(1980年)、日本的Jomosa(1984年)。
中国的肖家鑫(1987年)用孤子理论对DNA的复制、转录等遗传功能作出过解释。刘颂豪(1991年)也提出了生物学过程中的孤子现象。云南理工大学的周凌云对“由孤子状态进入混沌状态假说”的进一步发展作出了贡献。激光生物物理学家王惠文在其所著的《激光与生命科学》一书中介绍了周凌云的研究成果:“周凌云(1993)提出,在弱激光的作用下,DNA分子系统可进入‘无序’的混沌状态,并根据DNA分子动力学方程(Sine一Gordon方程)的分析结果,可以解释DNA的真实遗传,从而导出含激光一DNA分子动力学的运动方程,以及激光的电场相互作用对DNA分子系统的动力学效应。通过含激光与DNA相互作用运动方程的M.Inikov方法或知DNA系统即使在弱激光的作用下,也有可能由原来的孤立子运动状态进入混沌状态。从而导致其构象随时间‘无规则’地演化产生遗传变异’。但由于激光的生物刺激和诱变等效应作用机理的复杂性,特别是弱激光与生物分子的相互作用机理,目前尚未得出完善的科学解解释。
激光与生物组织的相互作用很复杂,有待进一步研究。激光生物效应分类还没有明确的界限,如在光化效应中光热效应也起了很大的作用,电磁作用也产生热效应和机械作用等,激光热作用、光化作用和机械作用通常是同时发生的,所以相互作用的分类并不是绝对的,但各种作用之间也确存在着一些差别。如每种效应都具有典型的激光及典型现象等。激光与生物组织的相互作用是一个多种因素决定的复杂过程,激光的参数(如波长、功率、激光模式等)、生物组织的性质(如密度、弹性、热导率、比热、热扩散率、反射率、吸收率、不均匀性和层次结构)以及生物体状态等对激光的生物效应都有影响。激光对生物组织的作用具有有利和不利两个方面,要想利用激光,最首要的任务是认识并理解激光与生物组织的相互作用机理,然后才能加以应用。
参考文献:
[1]周炳琨,高以智等.激光原理[M].第五版.北京:国防工业出版社,2007.14-23
[2]李海涛,杨继庆.激光生物效应及医学应用研究[J].第四军医大学报,2007,28(14).
[3]杨继庆,刘鲁伟,文峻.激光生物组织热作用的影响因素[J].激光杂志,2005,26(5):94.
浅议激光的生物学效应及生物物理机理探讨
论文关键词:激光 激光生物效应 激光与生物分子 论文摘要:本文主要简介了激光与生物组织相互作用所产生的生物效应,概述激光与生物分子相互作用机理研究现状。为提高和发展激
推荐度:
点击下载文档文档为doc格式
上一篇:关于卡文迪许扭矩实验的质疑与探讨
下一篇:物理学专业论文题目有哪些