小学生有理数教案3篇

若水1152 分享 时间:

  小编为大家收集了有理数教案专题频道有理数教案栏目,提供与有理数教案相关的所有资讯,希望我们所做的能让您感到满意!

  有理数教案一

  (一)知识教学点

  1.理解有理数乘方的意义.

  2.掌握有理数乘方的运算.

  (二)能力训练点

  1.培养学生观察、分析、比较、归纳、概括的能力.

  2.渗透转化思想.

  (三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

  (四)美育渗透点

  把记成,显示了乘方符号的简洁美.

  二、学法引导

  1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

  2.学生学法:探索的性质→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:运算.

  2.难点:运算的符号法则.

  3.疑点:①乘方和幂的区别.

  ②与的区别.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)创设情境,导入 新课

  师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

  生:可以记作,读作的四次方.

  师:呢?

  生:可以记作,读作的五次方.

  师:(为正整数)呢?

  生:可以记作,读作的次方.

  师:很好!把个相乘,记作,既简单又明确.

  【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.

  师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

  生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

  非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

  【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

  (二)探索新知,讲授新课

  1.求个相同因数的积的运算,叫做乘方.

  乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

  巩固练习(出示投影1)

  (1)在中,底数是__________,指数是___________,读作__________或读作___________;

  (2)在中,-2是__________,4是__________,读作__________或读作__________;

  (3)在中,底数是_________,指数是__________,读作__________;

  (4)5,底数是___________,指数是_____________.

  【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

  师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

  学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

  生:到目前为止,已经学习过五种运算,它们是:

  运算:加、减、乘、除、乘方;

  运算结果:和、差、积、商、幂;

  教师对学生的回答给予评价并鼓励.

  【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

  师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

  学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

  【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

  2.练习:(出示投影2)

  计算:1.(1)2, (2), (3), (4).

  2.(1),,,.

  (2)-2,,.

  3.(1)0, (2), (3), (4).

  学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

  师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

  先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

  生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

  师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

  学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

  生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

  师:请同学思考一个问题,任何一个数的偶次幂是什么数?

  生:任何一个数的偶次幂是非负数.

  师:你能把上述结论用数学符号表示吗?

  生:(1)当时,(为正整数);

  (2)当

  (3)当时,(为正整数);

  (4)(为正整数);

  (为正整数);

  (为正整数,为有理数).

  【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

  有理数教案二

  有理数的大小比较

  乐清市虹桥镇一中 赵爱媚

  作者简介:

  赵爱媚,女,中教一级。多篇论文在市级获奖

  一、背景知识

  《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。

  二、教学目标

  1、使学生能说出有理数大小的比较法则

  2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

  3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。

  三、教学重点与难点

  重点:运用法则借助数轴比较两个有理数的大小。

  难点:利用绝对值概念比较两个负分数的大小。

  四、教学准备

  多媒体课件

  五、教学设计

  (一)交流对话,探究新知

  1、说一说

  (多媒体显示)某一天我们5个城市的最低气温    从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。

  比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")

  广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。

  2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?

  (3)温度的高低与相应的数在数轴上的位置有什么?

  (通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:

  在数轴上表示的两个数,右边的数总比左边的数大。

  正数都大于零,负数都小于零,正数大于负数。

  (

  二)应用新知,体验成功

  1、练一练(师生共同完成例1后,学生完成随堂练习1)

  例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)

  分析:本题意有几层含义?应分几步?

  要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。

  随堂练习: P19 T1

  2、做一做

  (1)在数轴上表示下列各对数,并比较它们的大小

  ①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

  (2)求出图中各对数的绝对值,并比较它们的大小。

  (3)由①、②从中你发现了什么?

  (学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)

  要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

  在学生讨论的基础上,由学生总结得出有理数大小的比较法则。

  (1)正数都大于零,负数都小于零,正数大于负数。

  (2)两个正数比较大小,绝对值大的数大。

  (3)两个负数比较大小,绝对值大的数反而小。

  3、师生共同完成例2后,学生完成随堂练习2、3、4。

  例2比较下列每对数的大小,并说明理由:(师生共同完成)

  (1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|

  分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。

  注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。

  两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。

  思考:还有别的方法吗?(分组讨论,积极思考)

  4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?

  由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。

  练一练:P19 T2、3、4

  5、考考你:请你回答下列问题:

  (1)有没有的有理数,有没有最小的有理数,为什么?

  (2)有没有绝对值最小的有理数?若有,请把它写出来?

  (3)在于-1.5且小于4.2的整数有_____个,它们分别是____。

  (4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)

  (新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)

  6、议一议,谈谈本节课你有哪些收获

  (由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。

  有理数教案三

  有理数的乘方教学目标:

  知识与能力:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算。

  过程与方法:培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想。

  情感态度与价值观:培养学生勤思,认真,勇于探索的精神,并联系实际,加强理解,体会数学给我们的生活带来的便利。

  教学重点:正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。

  教学难点:正确理解乘方、底数、指数的概念并合理运算。

  教材分析:本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,然后,结合有理数乘方的运算,讲述了乘方的运算方法。跟这部分内容有关联的是后面“科学计数法”、“有理数的混合运算”等部分内容。

  教学方法:

  教法:引导探索法、尝试指导法,充分体现学生主体地位;

  学法:学生观察思考,自主探索,合作交流。

  教学用具:电脑多媒体。

  课时安排:一课时。

  教学过程:教学环节、教师活动、学生活动、设计意图。

  创设情境:(出示珠穆朗玛峰图片)

  引语:同学们,珠穆朗玛峰高吗?对,它的海拔有8848千米,可是将一张纸连续对折30次,会有12个珠穆朗玛峰高,你们感觉神奇吗?就让我们带着这份神奇走进数学课堂。要求学生折纸试验,对折一次变成了几层?对折2次变成了几层?连续对折30次,应该列一个怎样的算式?对折100次呢?如果把这些式子写出来,太麻烦,下面咱们一起来认识一位数学新朋友,相信他能帮你解决这个难题。

  板书课题:拿出课前准备好的纸,每个学生都试验一下,思考回答问题。激情导入,激发学生的求知欲。

  揭示学习目标:电脑展示学习目标、学生感悟、使学生了解本节学习内容。

  学生自学:请大家认真自读课本71-72页,思考下列问题。约六分钟后,同桌或前后桌同学围绕疑难问题,讨论交流,比谁的自学能力强,自学效率高。

  电脑展示:

  1.了解有理数乘方的概念。

  2.理解幂,指数,底数。

  3.一个数本身可以看作这个数本身的次方。

  4. (-a)n与-an一样吗?为什么?

  电脑展示:

  1.把下列各式写成乘方的形式,并指出底数和指数。

  (-3)×(-3)×(-3)×(-3)

  -2×2× 2×2×2×2×2

  2.你自己能找到同样的例子吗?

  3.计算:(–2)³ (–13 )³ -26

  学生积极思考,相互交流讨论,让不同层次的学生发言。此组练习具有梯度性,可调动不同层次学生的积极性。

  完成下列计算:

  2² 2³ 24 25

  (-2)² (-2)³ (-2)4 (-2)5

  观察计算结,想一想:正数幂的符号与指数有何关系?负数幂的符号与指数有何关系?

  学生对计算结果进行分析相互交流得出结论,把问题再次交给学生,充分发挥学生的主观能动性,培养学生归纳、总结的能力。

  学生做作业。

  教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学模式。整个教学过程从思考问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、思考、交流归纳的能力。不足之处:在练习的讲评上,应给学生一个较为自由的空间,让学生相互启发,相互交流。

小学生有理数教案3篇

小编为大家收集了有理数教案专题频道有理数教案栏目,提供与有理数教案相关的所有资讯,希望我们所做的能让您感到满意! 有理数教案一 (一)知识教学点 1.理解有理数乘方的意义. 2.掌握有理数乘方的运算. (二)能力训练点 1.培养学生观察、
推荐度:
点击下载文档文档为doc格式
244790