高一数学必修一知识点梳理五篇分享

若水1147 分享 时间:

学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个知识点,这样也方便同学们日后的复习。下面就是小编给大家带来的高一数学必修一知识点总结,希望能帮助到大家!

高一数学必修一知识点总结1

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

(7)两条直线的交点

相交

交点坐标即方程组的一组解.

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解.

高一数学必修一知识点总结2

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数

高一数学必修一知识点总结3

【函数的应用】

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

求函数的零点:

1(代数法)求方程的实数根;

2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

高一数学必修一知识点总结4

一、集合及其表示

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。

有一些特殊的集合需要记忆:

非负整数集(即自然数集)N正整数集N或N+

整数集Z有理数集Q实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

二、集合间的基本关系

1.子集,A包含于B,记为:,有两种可能

(1)A是B的一部分,

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之:集合A不包含于集合B,记作。

如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。

2.真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

高一数学必修一知识点总结5

集合有关概念

集合的含义

集合的中元素的三个特性:

元素的确定性如:世界上的山

元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

列举法:{a,b,c……}

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x-3>2},{x|x-3>2}

语言描述法:例:{不是直角三角形的三角形}

Venn图:

4、集合的分类:

有限集含有有限个元素的集合

无限集含有无限个元素的集合

空集不含任何元素的集合例:{x|x2=-5}

高一数学集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。A(A

②真子集:如果A(B,且A(B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A(B,B(C,那么A(C

④如果A(B同时B(A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

高一数学必修一知识点梳理五篇分享相关文章:

1.高一数学必修一知识点梳理5篇精选分享

2.高一数学必修一知识点归纳总结最新5篇分享

3.高一数学必修一知识点必考难点总结5篇分享

4.高一数学必修一知识点必背难点总结5篇

5.高一数学必修一知识点精选最新5篇

6.高一数学必修一知识点归纳总结三篇

7.最新精选高一数学必修1知识点归纳总结三篇

8.精选高一必修一数学知识点总结归纳

9.高一数学必修一知识点大全三篇

10.高一年级数学必修1知识点整理

高一数学必修一知识点梳理五篇分享

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
271143