人教版数学高一知识点汇总
高一阶段,是打基础阶段,是将来决战高考取胜的关键阶段,尽早进入角色,安排好自己的学习和生活,会起到事半功倍的效果。下面就是小编给大家带来的人教版高一数学知识点总结,希望能帮助到大家!
人教版高一数学知识点总结1
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
人教版高一数学知识点总结2
空间直角坐标系定义:
过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。
1、右手直角坐标系
①右手直角坐标系的建立规则:x轴、y轴、z轴互相垂直,分别指向右手的拇指、食指、中指;
②已知点的坐标P(x,y,z)作点的方法与步骤(路径法):
沿x轴正方向(x>0时)或负方向(x<0时)移动|x|个单位,再沿y轴正方向(y>0时)或负方向(y<0时)移动|y|个单位,最后沿x轴正方向(z>0时)或负方向(z<>
③已知点的位置求坐标的方法:
过P作三个平面分别与x轴、y轴、z轴垂直于A,B,C,点A,B,C在x轴、y轴、z轴的坐标分别是a,b,c则(a,b,c)就是点P的坐标。
2、在x轴上的点分别可以表示为(a,0,0),(0,b,0),(0,0,c)。
在坐标平面xOy,xOz,yOz内的点分别可以表示为(a,b,0),(a,0,c),(0,b,c)。
3、点P(a,b,c)关于x轴的对称点的坐标为(a,-b,-c);
点P(a,b,c)关于y轴的对称点的坐标为(-a,b,-c);
点P(a,b,c)关于z轴的对称点的坐标为(-a,-b,c);
点P(a,b,c)关于坐标平面xOy的对称点为(a,b,-c);
点P(a,b,c)关于坐标平面xOz的对称点为(a,-b,c);
点P(a,b,c)关于坐标平面yOz的对称点为(-a,b,c);
点P(a,b,c)关于原点的对称点(-a,-b,-c)。
4、已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则线段PQ的中点坐标为
5、空间两点间的距离公式
已知空间两点P(x1,y1,z1),Q(x2,y2,z2),则两点的距离为特殊点A(x,y,z)到原点O的距离为
6、以C(x0,y0,z0)为球心,r为半径的球面方程为
特殊地,以原点为球心,r为半径的球面方程为x2+y2+z2=r2
人教版高一数学知识点总结3
函数及其表示
1.函数的基本概念
(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.
(2)函数的定义域、值域
在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.
(3)函数的三要素:定义域、值域和对应关系.
(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.
2.函数的三种表示方法
表示函数的常用方法有:解析法、列表法、图象法.
3.映射的概念
一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.
注意:
一个方法
求复合函数y=f(t),t=q(x)的定义域的方法:
①若y=f(t)的定义域为(a,b),则解不等式得a
两个防范
(1)解决函数问题,必须优先考虑函数的定义域.
(2)用换元法解题时,应注意换元前后的等价性.
三个要素
函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f.
人教版高一数学知识点总结4
多面体
1、棱柱
棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质
(1)侧棱都相等,侧面是平行四边形
(2)两个底面与平行于底面的截面是全等的多边形
(3)过不相邻的两条侧棱的截面(对角面)是平行四边形
2、棱锥
棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥
棱锥的性质:
(1)侧棱交于一点。侧面都是三角形
(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方
3、正棱锥
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
人教版高一数学知识点总结5
1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线
K=-A/B,b=-C/B
A1/A2=B1/B2≠C1/C2←→两直线平行
A1/A2=B1/B2=C1/C2←→两直线重合
横截距a=-C/A
纵截距b=-C/B
2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线
表示斜率为k,且过(x0,y0)的直线
3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线
4:斜截式:y=kx+b适用于不垂直于x轴的直线
表示斜率为k且y轴截距为b的直线
5:两点式:适用于不垂直于x轴、y轴的直线
表示过(x1,y1)和(x2,y2)的直线
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)
6:交点式:f1(x,y)m+f2(x,y)=0适用于任何直线
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线
7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线
表示过点(x0,y0)且与直线f(x,y)=0平行的直线
8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度
9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线
表示过点(x0,y0)且方向向量为(u,v)的直线
10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线
表示过点(x0,y0)且与向量(a,b)垂直的直线
11:点到直线距离
点P(x0,y0)到直线Ι:Ax+By+C=0的距离
d=|Ax0+By0+C|/√A2+B2
两平行线之间距离
若两平行直线的方程分别为:
Ax+By+C1=OAx+By+C2=0则
这两条平行直线间的距离d为:
d=丨C1-C2丨/√(A2+B2)
12:各种不同形式的直线方程的局限性:
(1)点斜式和斜截式都不能表示斜率不存在的直线;
(2)两点式不能表示与坐标轴平行的直线;
(3)截距式不能表示与坐标轴平行或过原点的直线;
(4)直线方程的一般式中系数A、B不能同时为零.
13:位置关系
若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=0
1.当A1B2-A2B1≠0时,相交
2.A1/A2=B1/B2≠C1/C2,平行
3.A1/A2=B1/B2=C1/C2,重合
4.A1A2+B1B2=0,垂直
人教版数学高一知识点汇总相关文章:
人教版数学高一知识点汇总
上一篇:高一数学知识点精选人教版总结分享