高一数学必修一知识点总结五篇分享

若水1147 分享 时间:

数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在化学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。下面就是小编给大家带来的高一数学必修一知识点总结,希望能帮助到大家!

高一数学必修一知识点总结1

一、集合

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

二、函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略

3、恒成立问题的求解策略

4、反函数的几种题型及方法

5、二次函数根的问题——一题多解

&指数函数y=a^x

a^a_^b=a^a+b(a>0,a、b属于Q)

(a^a)^b=a^ab(a>0,a、b属于Q)

(ab)^a=a^a_^a(a>0,a、b属于Q)

指数函数对称规律:

1、函数y=a^x与y=a^-x关于y轴对称

2、函数y=a^x与y=-a^x关于x轴对称

3、函数y=a^x与y=-a^-x关于坐标原点对称

&对数函数y=loga^x

如果,且,,,那么:

○1•+;

○2-;

○3.

注意:换底公式

(,且;,且;).

幂函数y=x^a(a属于R)

1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.

3、函数零点的求法:

○1(代数法)求方程的实数根;

○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数.

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

三、平面向量

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

&向量的运算

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。

设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

四、三角函数

1、善于用“1“巧解题

2、三角问题的非三角化解题策略

3、三角函数有界性求最值解题方法

4、三角函数向量综合题例析

5、三角函数中的数学思想方法

高一数学必修一知识点总结2

一:集合的含义与表示

1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:

(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

3、集合的表示:{…}

(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来{a,b,c……}

b、描述法:

①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR|x-3>2},{x|x-3>2}

②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:

(1)有限集:含有有限个元素的集合

(2)无限集:含有无限个元素的集合

(3)空集:不含任何元素的集合

5、元素与集合的关系:

(1)元素在集合里,则元素属于集合,即:aA

(2)元素不在集合里,则元素不属于集合,即:a¢A

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_N+

整数集Z

有理数集Q

实数集R

高一数学必修一知识点总结3

函数模型及其应用

本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

2、用函数解应用题的基本步骤是:(1)阅读并且理解题意.(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。

常见考法:

本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

误区提醒:

1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

【典型例题】

例1:

(1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).

(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数.y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元.

例2:

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

高一数学必修一知识点总结4

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性,

(2)元素的互异性,

(3)元素的无序性,

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

例题:

1.下列四组对象,能构成集合的是()

A某班所有高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数

2.集合{a,b,c}的真子集共有个

3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},则M与N的关系是.

4.设集合A=,B=,若AB,则的取值范围是

5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,

两种实验都做错得有4人,则这两种实验都做对的有人。

6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.

7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

(见课本21页相关例2)

2.值域:先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

(2)画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:A→B

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A)定义法:

○1任取x1,x2∈D,且x1

○2作差f(x1)-f(x2);

○3变形(通常是因式分解和配方);

○4定号(即判断差f(x1)-f(x2)的正负);

○5下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定.

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1)凑配法

2)待定系数法

3)换元法

4)消参法

10.函数(小)值(定义见课本p36页)

○1利用二次函数的性质(配方法)求函数的(小)值

○2利用图象求函数的(小)值

○3利用函数单调性的判断函数的(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

例题:

1.求下列函数的定义域:

⑴⑵

2.设函数的定义域为,则函数的定义域为__

3.若函数的定义域为,则函数的定义域是

4.函数,若,则=

6.已知函数,求函数,的解析式

7.已知函数满足,则=。

8.设是R上的奇函数,且当时,,则当时=

在R上的解析式为

9.求下列函数的单调区间:

⑴(2)

10.判断函数的单调性并证明你的结论.

11.设函数判断它的奇偶性并且求证

高一数学必修一知识点总结5

【集合与函数概念】

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1.Com

非负整数集(即自然数集)记作:N

正整数集:N_N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

运算类型交集并集补集

定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

高一数学必修一知识点总结五篇分享相关文章:

1.高一数学必修一知识点总结分享5篇

2.高一数学必修一知识点必考难点总结5篇分享

3.高一数学必修一知识点必背难点总结5篇

4.高一数学必修一知识点精选最新5篇

5.高一数学必修一知识点归纳总结三篇

6.精选高一必修一数学知识点总结归纳

7.最新精选高一数学必修1知识点归纳总结三篇

8.高一数学必修一知识点大全三篇

9.高一年级数学必修1知识点整理

10.高一数学必修一知识点归纳总结最新5篇分享

高一数学必修一知识点总结五篇分享

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
271133