数学必修一第一章知识点

若水1147 分享 时间:

进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,接下来小编在这里给大家分享一些关于数学必修一第一章知识点,供大家学习和参考,希望对大家有所帮助。

数学必修一第一章知识点

一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N

_

.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);

2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B}

5)补集:CUA={x|xA但x∈U}

注意:①?A,若A≠?,则?A;

②若,,则;

③若且,则A=B(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

4.有关子集的几个等价关系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:

【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系

A)M=NPB)MN=PC)MNPD)NPM

分析一:从判断元素的共性与区别入手。

解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}

对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

分析二:简单列举集合中的元素。

解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

=∈N,∈N,∴MN,又=M,∴MN,

=P,∴NP又∈N,∴PN,故P=N,所以选B。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合,,则(B)

A.M=NB.MNC.NMD.

解:

当时,2k+1是奇数,k+2是整数,选B

【例2】定义集合A_={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则A_的子集个数为

A)1B)2C)3D)4

分析:确定集合A_子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。

解答:∵A_={x|x∈A且xB},∴A_={1,7},有两个元素,故A_的子集共有22个。选D。

变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为

A)5个B)6个C)7个D)8个

变式2:已知{a,b}A{a,b,c,d,e},求集合A.

解:由已知,集合中必须含有元素a,b.

集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个.

【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A

∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,

∴∴

变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴

又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1

分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。

综合以上各式有B={x|-1≤x≤5}

变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。

解答:M={-1,3},∵M∩N=N,∴NM

①当时,ax-1=0无解,∴a=0②

综①②得:所求集合为{-1,0,}

【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在有解,再利用参数分离求解。

解答:(1)若,在内有有解

令当时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

【同步练习题】

一、选择题(每题4分,共40分)

1、下列四组对象,能构成集合的是()

A某班所有高个子的学生B的艺术家

C一切很大的书D倒数等于它自身的实数

2、集合{a,b,c}的真子集共有个()

A7B8C9D10

3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()

A.6B.7C.8D.9

4、若U={1,2,3,4},M={1,2},N={2,3},则CU(M∪N)=()

A.{1,2,3}B.{2}C.{1,3,4}D.{4}

5、方程组的解集是()

A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}

6、以下六个关系式:,,,,,是空集中,错误的个数是()

A4B3C2D1

7、点的集合M={(x,y)|xy≥0}是指()

A.第一象限内的点集B.第三象限内的点集

C.第一、第三象限内的点集D.不在第二、第四象限内的点集

8、设集合A=,B=,若AB,则的取值范围是()

ABCD

9、满足条件M=的集合M的个数是()

A1B2C3D4

10、集合,,,且,则有()

AB

CD不属于P、Q、R中的任意一个

二、填空题(每题3分,共18分)

11、若,,用列举法表示B

12、集合A={x|x2+x-6=0},B={x|ax+1=0},若BA,则a=__________

13、设全集U=,A=,CA=,则=,=。

14、集合,,____________.

15、已知集合A={x|},若A∩R=,则实数m的取值范围是

16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.

三、解答题(每题10分,共40分)

17、已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值

18、已知二次函数()=,A=,试求的解析式

19、已知集合,B=,若,且求实数a,b的值。

20、设,集合,,且A=B,求实数x,y的值。

数学必修一学习方法

严防题海战术,克服盲目做题而不注重归纳的现象。

做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

数学必修一学习技巧

掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。


数学必修一第一章知识点相关文章:

高一年级数学必修1知识点整理

高一数学必修一知识点总结归纳五篇精选

高中数学必修一知识点总结整理归纳

2020数学必修一知识点归纳总结大全

高一数学必修一知识点大全三篇

高一数学必修一知识点总结归纳精选5篇分享

高一数学必修一知识点必背难点总结5篇

高一数学必修一知识点总结归纳2020最新5篇

人教版高一数学必修一知识点精选归纳5篇

高一必修一数学知识点总结归纳5篇

数学必修一第一章知识点

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
868203