六年级奥数专题练习题含答案
推荐文章
做六年级奥数专题练习要牢记自己哪里容易出错,做个错题集。对于高难度题目的错,力求弄懂并多做。只要你做的量够了,你成绩肯定不会差。下面就是小编给大家带来的六年级奥数专题练习题含答案,希望能帮助到大家!
六年级奥数专题练习题含答案
[专题介绍]
工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。
[经典例题]
例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)
解:定价是进价的1+35%
打九折后,实际售价是进价的135%×90%=121.5%
每台DVD的实际盈利:208+50=258(元)
每台DVD的进价258÷(121.5%-1)=1200(元)
答:每台DVD的进价是1200元
例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)
分析:
解:设乙店的成本价为1
(1+15%)是乙店的定价
(1-10%)×(1+20%)是甲店的定价
(1+15%)-(1-10%)×(1+20%)=7%
11.2÷7%=160(元)
160×(1-10%)=144(元)
答:甲店的进货价为144元。
例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)
分析:
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%
X%=25%
(1+25%)÷(1+100%)=62.5%
答:第二次降价后的价格是原来价格的62.5%
六年级奥数专题练习题
1、某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。这种商品的进货价是每个多少元?
2、租用仓库堆放3吨货物,每月租金7000元。这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。问:每千克货物的价格降低了多少元?
3、张先生向商店订购了每件定价100元的某种商品80件。张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件。”商店经理算了一下,若减价5%,则由于张先生多订购,获得的利润反而比原来多100元。问:这种商品的成本是多少元?
4、某商店到苹果产地去收购苹果,收购价为每千克1.20元。从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。如果在运输及销售过程中的损耗是10%,商店要想实现25%的利润率,零售价应是每千克多少元?
5、小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。新年优惠,两种球都按1元2个卖,结果小明少花了8元钱。问:小明共买了多少个球?
6、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。甲种贷款年利率为12%,乙种贷款年利率为14%。该厂申请甲、乙两种贷款的金额各是多少?
7、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。这批钢笔的进货价每支多少元?
8、某种蜜瓜大量上市,这几天的价格每天都是前一天的80%。妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。若这10个蜜瓜都在第三天买,则能少花多少钱?
9、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。问:这批凉鞋共多少双?
10、体育用品商店用3000元购进50个足球和40个篮球。零售时足球加价9%,篮球加价11%,全部卖出后获利润298元。问:每个足球和篮球的进价是多少元?
六年级奥数专题练习题含答案
1、 现在有浓度为20%的糖水300克,要把它变成浓度为40%的糖水,需要加糖多少克?
300×(1-20%)÷(1-40%)-300=100克
2、 有含盐15%的盐水20千克,要使盐水的浓度为20%,需加盐多少千克?
20×(1-15%)÷(1-20%)-20=1.25千克
3、 用含氨0.15%的氨水进行油菜追肥。现有含氨16%的氨水30千克,配置时需加水多少千克?
30×(16%-0.15%)÷0.15%=3170千克
4、 仓库运来含水量为90%的一种水果100千克。一星期后再测,发现含水量降低到80%。现在这批水果的质量是多少千克?
100×(1-90%)÷(1-80%)=50千克
5、 在100千克浓度为50%的硫酸溶液中,再加入多少千克浓度为5%的硫酸溶液就可以配制成25%的硫酸溶液?
100×(50%-25%)÷(25%-5%)=125千克
6、 浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后所得到的酒精溶液的浓度是多少?
(500×70%+300×50%)÷(500+300)×100%=62.5%
7、 两种钢分别含镍5%和40%,要得到140吨含镍30%的钢,需要含镍5%的钢和含镍40%的钢各多少吨?
解:设需含镍5%的钢x吨,则含镍40%的钢140-x吨,
5%x+(140-x)×40%=140×30%
X =40
140-40=100吨
8、 甲、乙两种酒各含酒精75%和55%,要配制含酒精65%的酒3000克,应当从这两种酒中各取多少克?
(3000×75%-3000×65%)÷【1×(75%-55%)】=1500克
3000-1500=1500克
9、 从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再用清水将杯加满。如此反复三次后,杯中盐水的浓度是多少?
解法一:100×80%=80克 40×80%=32克
(80-32)÷100=48% 40×48%=19.2克
(80-32-19.2)÷100=28.8%
40×28.8=11.52克
(80-32-19.2-11.52)÷100=17.28%
解法二:80×(1-40100 )×(1-40100 )×(1-40100 )÷100=17.28%
10、 甲容器中有8%的盐水300克,乙容器中有12.5%的盐水120克。往甲、乙两个容器分别倒入等量的水,使两个容器中盐水的浓度一样。每个容器应倒入多少克水?
300×8%=24克 120×12.5%=15克
解:设每个容器应倒入x克水。
24300+x =15120+x
X =180
10.A、B、C三种盐水浓度分别为20%,18%,16%,用这三种盐水,配制浓度为18.8%的盐水100克,已知B比C多用30克,求三种盐水各用多少克。
设C用了X克,因B比C多用30克,那么B就应该是B=30+X;又因为3种盐水混合后重量为100,那么A=100-(B+C)=70-2X
又因总的浓度为18.8%,那么列方程为
20%×(70-2X)+18%×(30+X)+16%×X=100×18.8%
X=10
即A=50 B=40 C=10
11.甲酒精浓度为72%。乙酒精浓度为58%,混合后酒精浓度为62%,如果每种酒精比原来多取15升,混合后酒精浓度为63.25%,问第一次混合时,甲、乙两种酒精各取了多少升?
设第一次混合时,甲、乙两种酒精各取了X、Y升,那么第二次取的就是X+15 Y+15
列方程得:
72%X+58%Y=62%×(X+Y)
72%×(X+15)+58%×(Y+15)=63.25%×(X+15+Y+15)
X=12 Y=30
12、某种浓度的盐水中,加入若干水后,得到的盐水浓度为20%;如果在新盐水中再加入与前面相等重量的盐后,盐水的浓度为1/3,求原来盐水的浓度上多少?
十字交叉法
加入的盐的重量,与20%盐水的重量比为:
(1/3-20%):(1-1/3)=1:5
原来盐水与20%盐水的重量比为:
(5-1):5=4:5
则,原来盐水浓度,与20%的比为5:4
原来盐水浓度:
20%×5/4=1/4
13、商店里买氨水,氨水中含氮16%,喷洒时需稀释为0.15%的氨水,现要使用320千克稀释后的氨水,需准备含氮为16%的氨水多少千克?需加水多少千克?
设需准备含氮为16%的氨水为X千克
16%X=320x0.15%
X=3
需加水320-3=317千克
14、有两个容积相同的容器,甲容器中盐与水的比是2:9,乙容器中盐与水的比是3:10,现在把两中溶液混合在一起,问现在盐与盐水的比是( )
若两容器容积都为V
则V甲(盐)=2/11V V甲(水)=9/11V V乙(盐)=3/13V V乙(水)=10/13V
所以混合后盐:水=(2/11V+3/13V):(9/11V+10/13V)=59:227
所以盐:盐水=59:286
六年级奥数专题练习题含答案相关文章: