六年级数学《负数的初步认识》优秀教学设计三篇
推荐文章
六年级数学《负数的初步认识》优秀教学设计三篇
在熟悉的生活情境中初步认识负数,理解负数的意义。明确0既不是正数也不是负数, 能用正、负数表示一些日常生活中的相反意义的量,感受符号的简洁及使用负数的优越性。下面就是小编给大家带来的六年级数学《负数的初步认识》优秀教学设计三篇,希望能帮助到大家!
六年级数学《负数的初步认识》优秀教学设计一
教学目标:
1、在熟悉的生活情境中,了解负数的意义,会读写负数。
2、会用负数表示一些日常生活中的量,体验数学的应用价值。
3、在认识负数和应用负数解决问题的过程中获得成功的体验,坚定学好数学的信心。
教学重点:
巩固对负数的认识。
教学难点:
掌握正负数表示相反意义的量。
教具准备:
多媒体课件
教学方法:
自学教材、整理梳理、巩固练习
教学过程:
一、梳理知识。
1、认真看课本第87页到91页的内容,回忆整理有关负数的知识
(1)举例说明如何读写正负数?在书写正数和负数时应注意些什么?
(2)为什么0既不是正数也不是负数?正数都____0;负数都_____0。
(3)正数负数表示什么样的两种量?你能举出生活中的例子吗?
2、4分钟后,对子之间相互交流,如用疑问可以小组讨论!
3、小结:我们把像+3、+15、+8844.43……等这样的数叫做正数;像-6、,-10,-155……等这样的数叫做负数。0小于一切正数,大于一切负数,0是正、负数的分界点。0既不是正数,也不是负数。
正数、负数表示意义相反的两种量。
二、基础练习。
1、展示一
(1)如果前进30m记作+30m,那么-20m表示( ),后退10m记作( )。
(2)如果+60m表示上升60m,那么-60m表示( ),下降50m记作( )。
(3)如果+120m表示向东行120m,那么-70m表示(),向西行50m记作( )。
要求:1、独立做题,。
2、写完的同学对子之间相互检查
3、展示二
(1)读一读,填一填。
37,-78,+20,-5,0,+121, 98, -1000, -13, 34, -34。
负数 正数
最后剩下一个数没有填入上面的框中,这个数是( ) 。
(2)六年级3个班进行智力抢答赛,答对1题得10分,答错1题扣10分,不答题得0分。已知一班答对1题,二班答错1题,三班对、错各1题,请写出这3个班的得分情况。
一班( )分 二班( )分 三班( )分
三、提高练习。
(一)填一填
1、如果向南行50m记作-50m,那么向北行45m记作( ),-45m表示( )。
2、如果支出180元记作-180元,那么收入800元记作( ),-200元表示( )。
3、如果逆时针旋转28°记作+28°,那么顺时针旋转16°记作( ),+16°表示( )。
(二)做一做
1、同学们利用休息日帮助果农采摘苹果,从4棵苹果树上摘下的苹果分别放成4堆。果农王大伯估计每棵树可产苹果100kg,同学们以此估计数为标准,超过的千克数记为正数,不足的千克数记为负数。
(1)这4堆苹果共重多少千克?
(2)这4堆苹果平均每堆重多少千克?与王大伯的估计数比较,结果用正、负数表示。
2、一个小组8名同学的身高如下表
(1)算出8人的平均身高。
(2)如果把平均身高记为0,用正、负数表示每位同学的身高。
(3)上表中与平均身高相差为0cm,表示( );与平均身高相差为正数,表示( );与平均身高相差为负数,表示( )。
同桌讨论,集体讲评后,学生独立完成,
四、课堂小结
同学们,这节课我们收获了什么?还有什么问题?
五、课堂作业
家庭作业
板书设计:
负数的初步认识整理与复习
像+3、+15、+8844.43……等这样的数叫做正数;
像-6、,-10,-155……等这样的数叫做负数。
0小于一切正数,大于一切负数,0是正、负数的分界点。
0既不是正数,也不是负数。正数、负数表示意义相反的两种量。
六年级数学《负数的初步认识》优秀教学设计二
教学目标:
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
教学重点:
负数的意义和负数的读法与写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件
教学方法:
教师讲授、合作交流
教学过程:
一、复习导入
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)
三、运用新知,课堂作业
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识
正数:20、22、14、 +8844.43…
0:既不是正数也不是负数
负数:-2、-30、-10、-15、-155…
六年级数学《负数的初步认识》优秀教学设计三
【教学目标】
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
【教学重点】
负数的意义和负数的读法与写法。
【教学难点】
理解0既不是正数,也不是负数。
【教学过程】
一、激发兴趣,导入新课
游戏:《我变,我变,我变变变》
老师说一句话,请同学们说出一句和它意思相反的话。
二、创设情境、学习新知
1.教学例1。
(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。
你能用自己的方法来表示这两个温度吗?
学生思考后反馈,教师适时点拨、评价和引导。
教师小结:
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第123页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。
(2)巩固练习:课本第124页试一试。
教师巡视,集体订正。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
学生交流、讨论。
指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写,负号可以不写吗? 为什么?
三、巩固练习,深化认识
1.课堂活动:1、2题。
①读一读,议一议。
学生齐读,巩固负数的读法。
②根据题中的信息,说一说三个班的答题情况。
学生讨论交流,并说出理由。
2.练习二十五:1、3题。
独立练习,反馈交流。
四、联系生活,拓展运用
说一说:生活中哪些地方还会用到负数。