学习资料库 > 教学资源 > 教案 > 数学教案 > 新课标高中数学教案

新课标高中数学教案

若水1147 分享 时间:

函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段:第一阶段在义务教育阶段,学习了函数的描述性概念,接触了正比例函数,凡比例函数,一次函数,二次函数等;一起看看新课标高中数学教案!欢迎查阅!

新课标高中数学教案1

一 教材分析:

本节课是高中数学人教B版必修一2.1.4的内容,是学生在学习了函数、轴对称和中心对称图形的基础上来学习的,函数的奇偶性是考察函数性质时的又一个重要方面。教材从具体到抽象,从感性到理性,循序渐进地引导学生进入数学领域进行观察、归纳,形成函数奇偶性概念。同时渗透数形结合,从特殊到一般的数学思想。

二、确立教学目标

(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断简单函数的奇偶性。

(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊到一般的数学思想方法.

(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。 .教学重点:函数奇偶性概念的形成

教学难点:函数奇偶性的判断

三、 说教法和学法

1、教法

根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法、类比法为辅。教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

2、学法 让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

四、教学程序设计:

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:

(一)设疑导入,观图激趣。(二)指导观察,形成概念。(三)学生探索、发展思维。

(四)知识应用,巩固提高。(五)归纳小结,布置作业。

五、说课过程:

(一)设疑导入、观图激趣。

1、用多媒体展示一组图片,让学生感受生活中的美:对称美,再让学生举例。

通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。

(二)指导观察、形成概念。 数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。 先思考一个问题:哪些函数的图象关于轴对称?试举例。

然后以函数f(x)=x2和f(x)=︱x︱为例,学生动手作出图像,让学生回想,初中时怎样判断图象关于

轴对称呢? 此时提出研究方向: 今天我们将从数值角度研究图象的这种

特征,体现在自变量与函数值之间有何规律?

引导学生先把它们具体化,再用数学符号表示.借助课件演示(令

得出等式 比较

, 再令

,得到

) 让学生发现两个函数的对称性反应到函数值上具有的特性:,然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立.最后让学生用完整的语言给

出偶函数定义,不准确的地方教师予以提示或调整.

(1) 偶函数的定义:(板书)

设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且

f(-x)=f(x),那么f(x)就叫做偶函数.

接着提出新问题:

函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?然后多媒体展示两个学生非常熟悉的函数 f(x)?x和f(x)?1

x的图象让学生观察研究。

引导学生用类比的方法,得出结论,再鼓励学生给出奇函数的定义.

(2) 奇函数的定义(板书)

设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D 且

f(-x)= - f(x) ,那么f(x)就叫做奇函数.

(三) 学生探索、深化概念:

设计以下问题组织学生讨论思考回答

问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?

问题2:—x与x在几何有何关系?具有奇偶性的函数的定义域有何特征?

问题3:如果一个函数是奇函数,且0在定义域内,f(0)??如果一个函数既是奇函数,又是偶函数,则f(x)有何特性?

通过对三个问题的探讨,引导学生认识以下几点:(多媒体显示)

问题4:结合函数f(x)?1

x的图像回答以下问题:

(1)对于任意一个奇函数f(x),图像上的点P(x, f(x))关于原点的对称点P’的坐标是什么?点P’是否也在函数f(x)的图像上?由此可得到怎样的结论?

(2)如果一个函数的图像是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性?

学生通过交流探索问题4可以把奇函数的性质总结出来,然后教师发动学生自己研究一下偶函数图像的性质(教师板书)

(四)、知识应用,巩固提高。

例1. 判断下列函数的奇偶性

(1)f(x)=x4 (2)f(x)=x5

(3) f(x)=x+1/x (4)f(x)=1/x2

选例1的第(1)小题板书来示范解题步骤,其他例题让几个学生板演,其余学生在下面完成。

例1设计意图是归纳出判断奇偶性的步骤:

(1) 先求定义域,看是否关于原点对称;

(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x).

结合例1的答案,发动学生思考:一个函数奇偶性的可能情况有几种类型?(多媒体显示)

例1完成后,要求学生做练习,及时巩固,教师做好巡视指导

练习: 教材第53页,练习A第1题

下面来学习例2、例3

例2已知函数y=f(x)是偶函数,它在y轴右边的图象如下图,画出在y轴左边的图象. (多媒体显示)

1例3 研究函数y?2 的性质并作出它的图像 x

课件演示例2,板书例3.

例2 例3主要让学生体会学习了函数的单调性后为研究函数的性质带来的方便。根据奇、偶函数图像的对称性,只研究函数在y轴一侧的图像和性质就可以知道在另一侧的图像和性质。

(五)归纳小结,布置作业。

从知识和方法两个方面让学生谈本节课的收获,并进行反思。

作业:层次一:教材第52页习题2-1A 6、7、8题 层次二:教材第53页习题2-1B2、3、4题 层次三:补充题:判断按下列函数的奇偶性:

通过分层作业使学生进一步巩固本节课所学内容,并为学有余力和学习兴趣浓厚的学生提供进一步学习的机会

以上是对本节课的一些思考,不妥之处,敬请各位专家评委批评指正

新课标高中数学教案2

一、教材分析

(一)地位与作用

函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段:第一阶段在义务教育阶段,学习了函数的描述性概念,接触了正比例函数,凡比例函数,一次函数,二次函数等;本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(iI)是函数学习的第二阶段,是对函数概念的再认识阶段;第三阶段在选修系列得导数及其应用的学习,使函数学习的进一步深化和提高。因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数的思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。

本小节介绍了函数概念,及表示方法.我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。这里我主要谈谈函数概念的教学。

函数的概念部分用三个实际例子设计数学情境,让学生探寻变量和变量的对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数的概念,体验结合旧知识,探索新知识,研究新问题的快乐。

(二)学情分析

(1)在初中,学生已经学习过函数的概念,并且知道函数是变量之间的相互依赖关系.

(2)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

(3) 学生层次参次不齐,个体差异比较明显。

二、目标分析

根据《函数的概念》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

(一)教学目标

(1)知识与技能

1进一步体会函数是描述变量之间的依赖关系的重要数学模型,○能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用

2了解构成函数的要素,○理解函数定义域和值域的概念,并会求一些简单函数的定义域。 ③由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。

(2)过程与方法

引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构函数概念;体验结合旧知识探索新知识,研究新问题的快乐

(3)情感态度与价值观

通过对函数概念形成的探究过程培养学生发现问题,探索问题,不断超越的创新品质

(二)重点难点

重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 难点:函数概念及符号y=f(x)的理解

三、教法、学法分析

(一)教法

在本课的教学过程中采用设问、引导、启发、发现的方法,并灵活应用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境,组织学生自主、合作的探究活动,引导学生探索新知识。

(二)学法

首先,学生通过研究教师在课堂上提供的实例和提出的问题,展开分析和讨论,发表个人的见解,接下来采用学生评价学生的方法提炼问题的中心思想。其次,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。最后,学生在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

四、教学过程分析

(一)教学过程设计

(1)创设情境,提出问题。

引入课本的三个具体实例,引发学生的探索

对于例1:可以分别让学生计算t=1,2,5,10时,炮弹距离地面多高,同时关注t和h的变化范围,引导学生体会有解析式刻画变量之间的对应关系,启发学生用集合与对应的语言描述函数关系:

对于例2:可以让学生观察图像,找出臭氧空洞面积的年份或者臭氧空洞面积大约为2000万平方千米所对应的年份,引导学生体会图像对刻画变量之间的对应关系,并关注t和s的范围。启发学生再次利用集合与对应的语言描述函数关系:

对于例3:恩格尔系数与时间之间的关系是否和前两个例题的两个变量之间的关系相似?如何用集合和对应的语言进行描述

(2)引导探究,建构概念。

(1)进一步提问:“你觉得这三个问题有没有共同的特点呢?”由于这个问题比较开放,所以学生,容易形成数学以外的或者不在本课研究范围的观点。首先采用小组合作探究的形式获得共识,并由各小组派代表发表探究成果,接着再让其它学生根据老师的叙述,评论、提炼出重点。作为教学的引导者,我需要及时对学生的解答进行指引。最终得出函数的概念

(2)教师概括总结学生的探究成果,形成函数概念,并进一步解释函数概念

I、函数的三要素

Ii函数富豪的内涵

为深化学生对函数概念的理解 ,还可以用函数概念解析已经学过的一次函数,二次函数,妇女比例函数等,可以设计如下表格

函数 一次函数 二次函数 反比例函数

对应关系

定义域

值域

由学生填写

(3)自我尝试,初步应用。

例1、判断下列图像是否为函数图像。考察学生对函数定义的理解

例2、采用课本例1,并增加一问若f(x)=-1,求x

目的是引导学生探究求函数定义域的基本方法;对于用解析式表示的函数会用解析式求

函数值或有函数值求子变量的值,进一步体会函数级号的含义,区分f(-1),f(a),f(x) 例3.采用课本例2

目的:通过判断函数的相等认识到函数的整体性,并指出在三要素中,由于值域是由定义域和对应法则决定的,所以只要两个函数的定义域和对应关系相同,两个函数就相等;进一步加深函数概念的理解

(4)当堂训练,巩固深化。

通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

采用课后练习1、2、3

(5)小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

(二)作业设计

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

我设计了以下作业:

(1)必做题:课后习题A 1(2,3),2、5、6

(2)选做题:课后习题B 1、2

(三)板书设计

板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

新课标高中数学教案3

一教材分析

(1)地位和作用

向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.

平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.

(2)教学结构的调整

课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.

(3)重点,难点,关键

由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解.

二教学目标的确定

根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.

(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。

(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

三教学方法的选择

Ⅰ教学方法

本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:

(1)由教材的特点确立类比思维为教学的主线.

从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.

(2)由学生的特点确立自主探索式的学习方法

通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.

Ⅱ教学手段

本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学.多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破.

四教学过程的设计

Ⅰ知识引入阶段---提出学习课题,明确学习目标

(1) 创设情境——引入概念

数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等.这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣.

(2) 观察归纳——形成概念

由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就确定.再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。

(3) 讨论研究——深化概念

在得到概念后进行归纳,深化,之后向学生提出以下三个问题:

①向量的要素是什么?

②向量之间能否比较大小?

③向量与数量的区别是什么?

同时指出这就是本节课我们要研究和学习的主题.

Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念

(1) 总结反思——提高认识

方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.

(2)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

[练习1]判断下列命题是否正确,若不正确,请简述理由.


新课标高中数学教案相关文章:

新课标高二数学教案模板

人教版新课标高一数学必修四教案模板

人教版高一数学必修一教案模板

高一数学必修一教案模板

关于高中必修1数学教案优秀范文合集大全

高一数学优秀教案模板

高一数学上册教案模板

高一数学教案设计模板

高一数学必修4教案模板

高一数学必修二教案模板

609675