青岛版五年级上册数学教案
推荐文章
3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断。一起看看通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣。一起看看青岛版五年级上册数学教案!欢迎查阅!
青岛版五年级上册数学教案1
教学目的:
1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。
2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。
3、通过探究3的倍数的特征的活动过程,让学生获得积极的情感体验,激发学习数学的兴趣
教学重点:
理解3的倍数的特征。
教学难点:
探索活动中,发现规律,并归纳出3的倍数的特征。
教具准备:
实物投影仪、数字卡片等。
学具准备:
每人几张数字卡片。
教学过程:
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
板书课题:3的倍数的特征。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)
(二)活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的各个数字加起来试试看
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1) 自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试
在下面数中圈出3的倍数。
28 45 53 87 36 65
(先自己圈,然后说说你是怎样判断的?)
(四)活动四:练一练
1、请将编号是3的倍数的气球涂上颜色。
36 17 54 71 45 48
(自己独立完成,在小组内说说自己的想法。)
2、选出两个数字组成一个两位数,分别满足下面的条件。
3 0 4 5
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5 的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)
(五)活动五:实践活动
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)
三、总结。
通过这节课的学习,你有什么收获?
板书设计:
课题:探索活动(二)3的倍数的特征
1、在下面数中圈出3的倍数。
28 45 53 87 36 65
2、选出两个数字组成一个两位数,分别满足下面的条件。
3 0 4 5
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5 的倍数。
(4)同时是2,3和5的倍数。
青岛版五年级上册数学教案2
教学目标:
1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。
2、培养分析、比较及综合概括能力。
3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。
教学重点:
掌握3的倍数的特征,正确判断一个数是否是3的倍数。
教学难点:
探索3的倍数的特征。
教学过程:
一、【创设情景,明确目标】(3分钟)
(一)创设情景,反馈预习
1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?
P:16、24、85、102、138、170、
2 的倍数:16、24、102、138、170
5的倍数:85、170
即是2的倍数又是5的倍数:170
师:说一说,你是怎么想的?
生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.
2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
3、教师板书课题:3的倍数的特征。
(二)明确目标,引领方法
1、出示学习目标(见学案),生自读目标。
2、同伴说说自己的理解,谈谈如何实现目标。
【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。
二、【自主学习,同伴合作】(15分钟)
(一)自主学习,自我感知
1、小棒游戏,探究规律
师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
2、小组合作探究
(1)用3根小棒摆一个数,这些都是3的倍数吗?
师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家看一下导学案的合作要求
①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
(2)用4根再摆出一些数,这些都是3的倍数吗?
(3)用6根再摆出一些数,这些都是3的倍数吗?
(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?
预设
第一组:用3根小棒摆:2、12、102,都分别是3的倍数。
第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。
第三族,用6根小棒摆:都是3的倍数。
问题:你发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师评价:关键要看小棒的根数,了不起的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
(5)真的是这么回事吗?以9为例摆摆看。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。
3、总结提升
师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?
师:小组内交流一下。
小组活动。
师:谁来说说?
生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。
生2:各个数位上数的和是3的倍数,这个数就是3的倍数。
生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。
师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。
4、探究原因,区别理解
(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
研究16
师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)
但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)
用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)
看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。
通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。
(2)问:为什么3的倍数特征要看各个数位相加的和呢?
举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?
一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,
138分一分,试一试,看看是不是3的倍数
一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。
(2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。
P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)
三、【巩固拓展,形成能力】(10分钟)
(一)巩固训练,夯实基础
1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、圈出下面是3的倍数的数:42、78、111、165、655、5988
3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?
(预设:生1:1。
师:可以吗?还有其他答案吗?
生2:1,4,7都可以。
师:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。
师:恭喜你,三种可能都被你们猜中了!
师:如果它既是2的倍数,又是3的倍数呢?
生:24。
师:为什么只有24可以呢?
生:因为只有24既是2的倍数,又是3的倍数。)
(二)拓展训练,灵活创新
以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)
13689362754、123456789
老师:如果用各个数位之和是3的倍数,比较麻烦。
但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……
后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。
教师巡视,个别辅导。
(二)同伴讨论,互助共进
完成学案中“同伴合作,互助共进”内容。
重点交流学生所举的例子。
教师巡视,个别辅导。
【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。
四、【师生共学,交流分享】(5分钟)
(一)小组展示,彰显风采
指名小组进行汇报。
(二)师生完善,共同提高
1、学生纠正、补充、质疑
2、教师精讲、点拨、评价
在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。
【设计意图】通过教师的点拨完善学生对比的认识。
五、【巩固拓展,形成能力】(10分钟)
(一)巩固训练,夯实基础
先由学生自主完成学案中相应的内容,再同桌交流,完善答案。
1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、看一看哪些是3的倍数:42、78、111、165、655、5988
原来判断是用除法,现在用加法。改革了
3、不用计算,能快速算出来那个式子有余数吗?
802、3;342、3
4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数
5、下面都是吗?789、345、654
都是,有什么特点?相邻、连续三个自然数。
是不是所有都是呢?举例:123.为什么呢?
654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。
6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。
青岛版五年级上册数学教案3
教学目标:
1.知识与技能:使学生理解并掌握2和5的倍数的特征,能准确判断一个数是不是2或5的倍数以及理解并掌握奇数、偶数的含义,能准确判断一个数是奇数还是偶数。
2.过程与方法:让学生在理解2、5的倍数的特征的过程中,使学生的探索、推理、概括等能力得到培养和提高。
3.情感态度与价值观:在分析问题和解决问题的过程中,使学生得到成功的体验和快乐,并帮助学生建立独立获取数学知识和解决问题的信心。
教学重点:
掌握2和5的倍数的特征,理解奇数和偶数的意义。
教学难点掌握2和5的倍数的特征,会判断一个数是不是2或5的倍数。掌握奇数和偶数的含义,判断一个数是奇数还是偶数。会归纳总结其中的规律和方法。
教学工具:
课件、百数表、数字卡片
教学过程:
一、以旧引新,铺垫迁移
师:同学们,在学习新课之前呢,我们先来复习一下上节课我们学的知识。谁来说一说,我们上节课学了什么知识?
生:上节课我们学了因数和倍数。
师:是的,那什么是因数?什么是倍数?他们有什么关系?他们又有什么特点呢?哪位同学来说一说,让老师看一看谁上节课学的最棒。(鼓励学生举手发言,带动学生参与课堂的积极性)
①在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
②因数与倍数是相互依存的。
③一个数的最小因数是1,它的因数是它本身。一个数的最小倍数是它本身,没有倍数。
④一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
师:这位同学说的很对。那我们来做一做下面这道练习题。看一看同学们对这些知识的应用情况怎么样?
做一做
写出下面每个数的因数,然后再写出每个数的倍数(至少写4个)。
20 因数: 倍数:
25 因数: 倍数:
28 因数: 倍数:
20因数1、2、4、5、10、20 倍数20、40、60、80
25因数1、2、25 倍数25、50、75、100
28因数1、2、4、7、14、28 倍数28、56、84、112
师:同学们总结的很完整,说明同学们对上节课学的知识总结的都很好。下面同学们再按要求做一做下面两道题。
(1)从小到大写出10个2的倍数?
生:2的倍数有:2、4、6、8、10、12、14、16、18、20。
(2)从小到大写出10个5的倍数?
生:5的倍数有:5、10、15、20、25、30、35、40、45、50。
师:那同学们能看出来2和5的倍数有什么特征吗?
生:看不出来。
师:那同学们就和老师一起探索一下2和5的特征,看一看我们会发现什么有趣的事情?
2 举例交流,探索新知
二、5的倍数的特征
(1)引入百数表
师:在自然数中,5的倍数有多少个?
生:无数个
师:我们不能一个一个地研究,怎么办呢?
生:选择一部分数进行研究
师:那我们就先在1-100这一百个数中研究5的倍数的特征。
(2)出示百数表,在这些数中找出5的倍数,涂上红色。
(3)师:观察5的倍数,你有什么发现?
生:我们发现100以内5的倍数的个位都是0或者5的数。
(4)师:除了这些数以外,其它5的倍数也有这样的特征吗?我们来举例验证一下。
例1:判断105 225 160 380是不是5的倍数,并说出理由。
生:105个位是5,105÷5=21,105是5的倍数。
225个位是5,225÷5=45,125是5的倍数。
160个位是0,160÷5=32,160是5的倍数。
380个位是0,380÷5=76,180是5的倍数。
师:这进一步验证了3位数中个位是5或者0的数也是5的倍数。那我们来看一看个位不是0或者5的数是不是5的倍数呢?
例2: 202 136 343 564是不是5的倍数?
生:202÷5=40.4,202不是5的倍数。
136÷5=27.2,136不是5的倍数。
343÷5=68.6,343不是5的倍数。
564÷5=112.8,564不是5的倍数。
师:通过以上的两道例题,谁来概括一下5的倍数到底有什么特征?
生:个位上为0或5的数都是5的倍数。
师:是的,学习了5的特征有什么好处?
生:能更快的判断出一个数是不是5的倍数。
师:是的,那我们就来验证一下,同学们猜猜下面的数是不是5的倍数。
练一练
下面的数都是5的倍数吗?
75、280、1325、172、52460
生:75、280、1325、52460都是5的倍数,因为它们的个位都是0或者5;172不是5的倍数,172个位是2,而且172÷5=34.4,不是整数。
师:我们都知道了5的倍数的特征,那同学们知道2的倍数的特征吗?
生:不知道。
师:下面我们就来学习一下2的倍数的特征。请同学们再次拿出百数表。
(二)2的倍数的特征
师:根据研究5的特征的经验,同学们猜一猜2的倍数可能会有什么特征呢?
生:可能和数的个位有关系,个位是几的数是2的倍数特征。
师:同学们猜想的很有道理,但也只是猜想,到底是不是呢,我们来验证一下。
出示百数表,找出2的倍数,涂上绿色。
师:同学们观察一下2的倍数特征,你发现了什么?
生:100以内2的倍数的个位都是2、4、6、8、0的数。
师:是的,除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。
例3:判断124 282 360 458 396是不是2的倍数,并说明理由。
生:124÷2=62,124是2的倍数;
282÷2=141,282是2的倍数;
360÷2=180,360是2的倍数;
458÷2=229,458是2的倍数;
396÷2=198,396是2的倍数。
它们都是个位是0、2、4、6、8的数,而且都是2的倍数。
师:所以2的倍数有怎样的特征?
生:个位为0、2、4、6、8的数,都是2的倍数。
师:很好,那请同学们做一做下面一道题,判断一下哪个是2的倍数,哪个不是,把它们归归类。
例4:做一做
48、125、91、6、307、554、920、43
是 2的倍数:48、6、554、920;
不是2的倍数:125、91、307、43
师:通过以上的练习,相信大家都能确认2的倍数的特征了。学习完了2的倍数的特征,老师还要告诉你们一个有趣的规律。同学们想不想知道啊?(以此引入奇数和偶数的概念)
三、探究深入,总结概念
(一)奇数与偶数
师:我们已经掌握了2的倍数的特征。那这里呢,就出现了这样的一个概念:在整数中,是2的倍数的数叫做偶数(0也是偶数),其它不是2的倍数的数叫做奇数。例如,2是偶数,3是奇数。14是偶数,15是奇数。下面我们来做一做下面的练习题,进一步感受奇数和偶数的概念。
练习三
1、下列数中,那些是奇数?那些是偶数?
33 98 355 0 123 881
8089 1000 988 565 3678 677
生:奇数:33、355、123、881、8089、565、677
偶数:98、0、1000、988、3678
(二)2和5的倍数的特征
师:做一做下面的练习题,看看我们会发现什么?
做一做
下面哪些数是2的倍数?那些数是5的倍数?哪些数即是2的倍数,也是5的倍数?
24 35 67 90 99 15 106
60 75 130 521 280 6018 8100
生:2的倍数:24、90、106、60、130、280、6018、8100
5的倍数:35、90、15、60、75、130、280、8100
即是2的倍数,又是5的倍数:90、60、130、280、8100
师:做完这道题,你发现了什么?
生:即是2的倍数,又是5的倍数的数个位都是0。
师:是的,数学就是这么有意思,可以从不同的角度发现这么多有趣的规律。
4 及时练习,巩固提高
师:今天我们学了5的倍数的特征,2的倍数的特征。通过2的倍数的特征,我们又总结出了奇数和偶数的概念。还有即是2的倍数,又是5的倍数的特征。下面我们做一做下面的练习题,巩固一下今天所学内容。
练一练。
1、按要求用2、3、7、0四个数字组成三位数。(有几个写几个)
2的倍数有
5的倍数有
同时是2和5的倍数的数有
生:2的倍数有:372、732、230、320、302、720、270、702、370、730;
5的倍数有:230、270、370、320、730、720;
同时是2和5的倍数的数有:230、270、370、320、730、720。
2、一个三位数27( ),
(1)当括号里填( )时,此数是2的倍数。
(2)当括号里填( )时,此数是5的倍数。
生:(1)0、 2、 4、 6、 8
(2)0、 5
四、课后小结
1.提问:这节课你都获得了哪些知识?
学生:学习了2的倍数的特征,5的倍数的特征。总结出了奇数和偶数的概念。
2.教师归纳整理。
师:5的倍数的特征:个位上是0或者5的数,都是5的倍数;
2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。
奇数:整数中,不是2的倍数的数叫做奇数;
偶数:整数中,是2的倍数的数叫做偶数;
即是2的倍数,又是5的倍数的特征:个位上是0的数,都即是2的倍数,又是5的倍数。
青岛版五年级上册数学教案相关文章: