青岛版五年级数学第五单元教案

若水1147 分享 时间:

《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的奇偶性,一起看看青岛版五年级数学第五单元教案!欢迎查阅!

青岛版五年级数学第五单元教案1

教学目标:

1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。

2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。

3、让学生在活动中体验研究方法,提高推理能力。

教学准备:一次性纸杯、硬币、课件等。

教学过程环节设计:

一、创设情境,产生认知冲突。

师:同学们,有一位家住在河南岸,以摆渡为生的船夫,想请我代他向同学们提一个问题,不知同学们是否愿意帮这位船夫解决一下呢?

(愿意)

课件出示情境图和问题。

【设计意图】创设情境,让学生产生认知冲突,激发学生的学习兴趣,将学生引入到新知探究中来,调动学习的积极性。

二、分组活动,动手操作,感受奇偶性,建构数学模型。

1、活动一:

讨论:船夫将小船摆渡11次后,船在南岸还是北岸?

小组合作,教师引导学生尝试用“列表”、“画示意图”等方式探究。小组汇报时,展示表格或示意图,全班交流。

2、活动二:

一个纸杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上,翻动10次呢?翻动19次呢?100次呢?

学生动手操作,发现规律,汇报结果。

师:同学们,如果把“杯子”换成“硬币”,你能提出怎样的问题?试着回答这些问题,并用硬币操作验证自己的结论。

3、活动三:

讨论:加法中数的奇偶性与结果的奇偶性。

课件出示填有偶数的图形,奇数的正方形。

小组合作,完成表格(先猜一猜结果,再举例验证)

小组汇报,全班交流。

(师板书:)

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

【设计意图】让学生通过活动,经历加法中加数与和的奇偶性特点。培养提出问题,猜想结果,再实践验证的数学习惯,发展学生主动探究的能力。注重学生相互之间的交流,创设自主、合作、探究的数学学习课堂,让学生经历数学模型建构的全过程。

三、运用模型,解决问题。

1、判断下列算式的结果是奇数还是偶数。

10389+2004: 11387+131:

268+1024: 46786+25787:

6007+8997:

2、有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?

……(学生小组合作)

完成后,汇报反馈。

3、数学游戏。

规则如下:用骰子掷一次,得到一个点数,以 A点为起点,连续走两次,转到哪一格,那一格的奖品归你。

谁想上来参加?

……(学生玩游戏。)

这样玩下去,能获得奖品吗?为什么?

【设计意图】采用层层推进的方法,让学生学会运用所学的数学知识,解决生活中的实际问题。学会从生活实际中寻找数学问题,能运用数学知识分析并解决生活中的数学问题。培养学生的数学应用意识,提高学生的数学综合素质。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、如果将4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

板书设计:

数 的 奇 偶 性

偶数+偶数=偶数

奇数+奇数=偶数

偶数+奇数=奇数

青岛版五年级数学第五单元教案2

教学目标:

1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。

2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。

3、在活动中培养等毛生的观察、推理和归纳能力。

4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。

教学重点:探索数的奇偶性变化规律。

教具学具准备:数字卡片,盒子,奖品。

教学过程:

复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)

活动1:数的奇偶性在生活中的应用。

(一)激趣导入。

清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?

(二)自主探究,发现规律。

1、学生独立思考后进行汇报交流。

方法:用文字列举出开、关的情况

开、关;开、关;开、关;开、关;开、关;开、关……

让学生数数,直观地发现第11个人按过开关后,开关是打开的。

2、增加人次,深入探究。

如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?

3、第二次汇报交流。

投影下表:

用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。

(三)巩固应用。

1、看书学习并解决小船的靠岸问题。

2、解决杯子上下翻转,杯口的朝向问题。

3、举例说说数的奇偶性还能解决哪些生活问题?

(四)活动小结。

当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。

活动2:探索奇、偶数相加的规律。

(一)有奖游戏。

1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。

2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。

3、引发思考。

师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?

4、发现规律。

学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。

5、举例验证。

6、修改游戏规则。

(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?

(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)

(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。

(3)举例验证:奇数+偶数=奇数

(二)总结奇、偶数相加的规律。

奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。

(三)应用规律解决问题。

1、不计算,判断下列算式的结果是奇数还是偶数。

10389+2004 11387+131 268+1024

2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?

全课小结:说说这节课有什么收获?

青岛版五年级数学第五单元教案3

教学目标:

1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。

2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。

3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

教学重点:探索并理解数的奇偶性

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

教学过程:

一、游戏导入,感受奇偶性

1、游戏:换座位

首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。

(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)

2、讨论:为什么会出现这种情况呢?

学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。

(此时学生议论纷纷,正是引出偶数、奇数的时机)

3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。

学生相互举例说说怎样的数是奇数,怎样的数是偶数。

二、猜想验证,认识奇偶性

活动1

(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。

(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?

(3)探究活动

学生可能会运用数的方法得出结果,不一定正确。

师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?

引导学生运用策略:①列表法;②画示意图法。

三、实践操作、应用奇偶性

我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。

1、试一试

(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。

学生动手操作,发现规律:奇数次朝下,偶数次朝上。

师:把杯子换成硬币,你能提出类似的问题吗?

(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?(学生:小组合作)

学生开始动手操作。

反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。

引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。

学生动手操作,尝试发现

交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。

学生再次操作,感受过程,体验结论。

2、活动2

出示两组数:圆中的数有什么特点?正方形中的数有什么特点?

(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。

如果两个数相减呢?如果是连加或连减呢?

汇报成果:

(1)奇数﹢奇数=偶数 (2)奇数-奇数=偶数 (3)奇数+奇数+……+奇数=奇数(奇数个)

偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数(偶数个)

奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数

你能举几个例子说明一下吗?

(学生的举例可以引导从正反两个角度进行)

(2)运用判断下列算式的结果是奇数还是偶数。

10389 + 2004:_____ 46786-5787: _____ 11231+2557+3379+105:

11387 + 131: _____ 60075-997: _____ 335+7757+223+66789+73:

268 + 1024: _____ 9876-5432: _____ 2+4+6+8+10……+998+1000:

3、游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?

学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?

生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。

是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?

学生自由说。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

教学反思:

踏入七中育才(东区),心情就像这九月的天气一样时阴时晴。教学的压力,学生的现状,迫使我不得不放下我原有的教学模式,改进教学策略,尽快适应这所学校紧张的氛围。

听说学校要组织青年教师公开课比赛,我第一个报了名,旨在让其他老师给我提出一些建设性意见,提高我的课堂教学能力。最后定于第三周完成我的展示。

我上的是五年级数学“数的奇偶性”一节内容。报名后,我便积极的着手准备,钻研教材,查阅资料,设计程式,制作课件,并虚心请教了同教研组的余加秋老师和刘红敏老师,征求了他们的意见。

我的设计思路是:多给学生思维的空间;让学生全方位参与学习;要让学生体验到数学的探索方法;体现数学的生活化和趣味性。为此,我的教学目标定格为:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

在此基础上,我对教学过程进行了如下设计:

一、游戏导入,感受奇偶性

通过两两结对入座的游戏引出数的奇偶性

二、猜想验证,认识奇偶性

教学“活动1”,引导学生运用策略:应用列表法和画示意图法探索数的奇偶性。

三、实践操作、应用奇偶性

1、翻杯子游戏。

2、探索整数加减法得数的奇偶性,通过学生独立猜想,小组内交流,统一验证,巩固练习,让学生自主获取新知。

3、游戏“开心乐”,运用数的奇偶性解释生活中的现象。

四、课堂小结,课后延伸。

课后,教研组组织了所有老师评课。老师们各抒己见,既肯定了我的教学风格,又提出了宝贵的意见,让我受益非浅。我也及时的自省,在不同层面上进行了思考。

1、游戏是学生喜闻乐见的教学形式,能够激发学生的学习兴趣。但是不能没有目的性的为了游戏而游戏,应该在游戏中给学生解决数学问题的启发。本节课,我一共设计了两两结对入座的游戏、翻杯子游戏、“开心乐”等三个游戏,都是结合了教学内容而安排的,第一个游戏重在感受数的奇偶性,第二个游戏重在应用数的奇偶性,第三个游戏重在解释数的奇偶性,游戏的重心最后都落到了“数的奇偶性”上,因此起到了预想的效果。

2、现行的教材内容的广度和深度都有很大的挖掘空间,课前的准备将直接影响课堂教学的容量。本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还有值得改进的地方。

3、新课后的应用新知,不能单纯的是例题的改版,还应该有所变化,有所突破,注入新的元素,这样才能让学生灵活牢固的掌握所学知识。这节课中,我所设计的练习就过于程式化,没有跳出固有的“圈”,顺向思维练得多,逆向思维练得少,学生很难推陈出新。

4、数学课上的板书必须要能诠释重点,疏通难点。我在这堂课上的板书做到了前者,而疏漏了后者。“探索整数加减法得数的奇偶性”是本节课的重点,我特意将探索结果板书罗列了出来;探索的过程,是一个不完全归纳的思维过程,本是难点,但我没有把算式板书出来,就有点“空对空”的感觉了。

以上仅是我现有的一点感触,我想,随着教学工作的不断深入,我和学生的不断磨合,教学过程中还有许多的问题等着我去解决,我会以的状态去迎接每一次的挑战。


青岛版五年级数学第五单元教案相关文章:

青岛版五四制五年级数学上册教案模板

青岛版五四制五年级数学下册教案模板

青岛版五四制五年级上册数学教案模板

青岛版五年级数学第五单元教案

《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的奇偶性,一起看看青岛版五年级数学第五单元教案!欢迎查阅!青岛版五年级数学第五单元教案1教学目标:1、尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。2、通过活动,让学生经历猜想结果,举例验证,得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。3、让学生在活动中体验研
推荐度:
点击下载文档文档为doc格式
596884