人教版九年级下册数学教案

若水1147 分享 时间:

推荐文章

一元二次方程的一般形式有什么特点?等号的左、右分别是什么?一起看看人教版九年级下册数学教案!欢迎查阅!

人教版九年级下册数学教案1

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别.

活动1 复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

A.0    B.1    C.2    D.3

活动2 探究新知

根据题意列方程.

1.教材第2页 问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页 问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3 归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4 例题与练习

例1 在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2 教材第3页 例题.

例3 以-2为根的一元二次方程是(  )

A.x2+2x-1=0 B.x2-x-2=0

C.x2+x+2=0 D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页 练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5 课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页 习题21.1第1~7题.

人教版九年级下册数学教案2

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1 用配方法解下列关于x的方程:

(1)x2-8x+1=0 (2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.

解:略.

三、巩固练习

教材第9页 练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业布置

人教版九年级下册数学教案3

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

五、板书设计

人教版九年级下册数学教案

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式

相关热搜

594074