五四制九年级数学上册教案
使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.一起看看五四制九年级数学上册教案!欢迎查阅!
五四制九年级数学上册教案1
一、素质教育目标
(一)知识教学点
使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点
逐步培养学生观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
培养学生良好的学习习惯.
二、教学重点、难点和疑点
1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.
2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.
3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.
三、教学步骤
(一)明确目标
1.锐角的正弦值与余弦值随角度变化的规律是什么?
这一规律也是本课查表的依据,因此课前还得引导学生回忆.
答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).
2.若cos21°30′=0.9304,且表中同一行的修正值是 则cos21°31′=______,
cos21°28′=______.
3.不查表,比较大小:
(1)sin20°______sin20°15′;
(2)cos51°______cos50°10′;
(3)sin21°______cos68°.
学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.
3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.
(二)整体感知
已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.
(三)重点、难点的学习与目标完成过程.
例8 已知sinA=0.2974,求锐角A.
学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.
解:查表得sin17°18′=0.2974,所以
锐角A=17°18′.
例9 已知cosA=0.7857,求锐角A.
分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.
若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.
解:查表得cos38°12′=0.7859,所以:
0.7859=cos38°12′.
值减0.0002角度增1′
0.7857=cos38°13′,
即 锐角A=38°13′.
例10 已知cosB=0.4511,求锐角B.
例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.
解:0.4509=cos63°12′
值增0.0003角度减1′
0.4512=cos63°11′
∴锐角B=63°11′
为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.
2.已知下列正弦值或余弦值,求锐角A或B:
(1)sinA=0.7083,sinB=0.9371,
sinA=0.3526,sinB=0.5688;
(2)cosA=0.8290,cosB=0.7611,
cosA=0.2996,cosB=0.9931.
此题是配合例题而设置的,要求学生能快速准确得到答案.
(1)45°6′,69°34′,20°39′,34°40′;
(2)34°0′,40°26′,72°34′,6°44′.
3.查表求sin57°与cos33°,所得的值有什么关系?
此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).
(四)、总结、扩展
本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.
四、布置作业
教材复习题十四A组3、4,要求学生只查正、余弦。
五、板书设计
五四制九年级数学上册教案2
学习目标
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
学习过程
一、 温故知新:
(学生活动)同学们口答下面两个问题.二、 自主学习:
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
自学教材P90---P93,思考下列问题:
1、 什么叫圆周角?圆周角的两个特征: 。
2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.
(1)一个弧上所对的圆周角的个数有多少个?
(2).同弧所对的圆周角的度数是否发生变化?
(3).同弧上的圆周角与圆心角有什么关系?
3、默写圆周角定理及推论并证明。
4、能去掉"同圆或等圆"吗?若把"同弧或等弧"改成"同弦或等弦"性质成立吗?
5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
三、 典型例题:
例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,∠ACB的平分线交⊙O于D,求BC、AD、BD的长。
例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
四、 巩固练习:
1、(教材P93练习1)
解:
2、(教材P93练习2)
3、(教材P93练习3)
证明:
4、(教材P95习题24.1第9题)
五、 总结反思:
达标检测
1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于( ).
A.140° B.110° C.120° D.130°
(1) (2) (3)
2.如图2,∠1、∠2、∠3、∠4的大小关系是( )
A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2
3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于( )
A.100° B.110° C.120° D.130°
4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.
5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.
(4) (5)
6.(中考题)如图5, 于 ,若 ,则
7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.
拓展创新
1.如图,已知AB=AC,∠APC=60°
(1)求证:△ABC是等边三角形.
(2)若BC=4cm,求⊙O的面积.
3、教材P95习题24.1第12、13题。
布置作业教材P95习题24.1第10、11题。
五四制九年级数学上册教案3
一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
五四制九年级数学上册教案相关文章: