最新北师大九年级二次函数教案

若水1147 分享 时间:

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。一起看看最新北师大九年级二次函数教案!欢迎查阅!

北师大九年级二次函数教案1

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

3.通过学生共同观察和讨论,培养大家的合作交流意识.

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.具有初步的创新精神和实践能力.

教学重点

1.体会方程与函数之间的联系.

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

教学难点

1.探索方程与函数之间的联系的过程.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

教学方法

讨论探索法.

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.

北师大九年级二次函数教案2

教学目标与要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.

(3)情感、态度与价值观:通过观察、交流,归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.

教学重点:对二次函数概念的理解。

教学难点:由实际问题确定函数解析式

课前准备:导学案 ,PPT课件

教学过程:

教师活动 学生活动 设计意图

活动一 复习旧知 引出课题

1. 我们已经学习了那些函数?它们的图像是什么?

2. 出示图片(课件):打篮球,拱桥,喷泉,跳绳等。

3. 引出课题:喷水池喷出的水,河上

路线都会形成一条曲线,这些曲线

是否能用函数关系式来表示?它们

的形状是怎样画出来的?现在我们

开始探讨新一章的内容-----二次函

数,这节课我们一起研究什么样的

函数是二次函数(板书课题:二次

函数)

1.学生回忆已经学过的知识,并交流

2.学生观察图片

复习旧知,为类比、探究二次函数的概念做好铺垫

创设问题情境,让学生从生活中发现数学问题,激发学生学习数学的兴趣

北师大九年级二次函数教案3

初三数学二次函数的教学设计

知识技能 1. 能列出实际问题中的二次函数关系式;

2. 理解二次函数概念;

3. 能判断所给的函数关系式是否二次函数关系式;

4. 掌握二次函数解析式的几种常见形式.

过程方法 从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义.

情感态度 使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。

教学重点 理解二次函数的意义,能列出实际问题中二次函数解析式

教学难点 能列出实际问题中二次函数解析式

教学过程设计

教学程序及教学内容 师生行为 设计意图

一、情境引入

播放实际生活中的有关抛物线的图片,概括性的介绍本章.

二、探究新知

㈠、用函数关系式表示下列问题中变量之间的关系:

1.正方体的棱长是x,表面积是y,写出y关于x的'函数关系式;

2.n边形的对角线条数d与边数n有什么关系?

3.某工厂一种产品现在的年产量是20件,计划今后两年增加产量,如果每年都必上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

㈡观察所列函数关系式,看看有何共同特点?

、 、

㈢类比一次函数和反比例函数概念揭示二次函数概念:

一般地,形如 的函数,叫做二次函数。其中,x是自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项。

实质上,函数的名称都反映了函数表达式与自变量的关系.

三、课堂训练(略)

四、小结归纳:

学生谈本节课收获

1.二次函数概念

2.二次函数与一次函数的区别与联系

3.二次函数的4种常见形式

五、作业设计

㈠教材16页1、2

㈡补充:

1、①y=-x2②y=2x③y=22+x2-x3④m=3-t-t2是二次函数的是

2、用一根长60cm的铁丝围成一个矩形,矩形面积S(cm2)与它的一边长x(cm)之间的函数关系式是____________.

3、小李存入银行人民币500元,年利率为x%,两年到期,本息和为y元(不含利息税),y与x之间的函数关系是_______,若年利率为6%,两年到期的本利共______元.

4、在△ABC中,C=90,BC=a,AC=b,a+b=16,则RT△ABC的面积S与边长a的关系式是____;当a=8时,S=____;当S=24时,a=________.

5、当k=_____时, 是二次函数.

6、扇形周长为10,半径为x,面积为y,则y与x的函数关系式为_______________.

7、已知s与 成正比例,且t=3时,s=4,则s与t的函数关系式为_______________.

8、下列函数不属于二次函数的是( )

A.y=(x-1)(x+2) B.y= (x+1)2 C.y=2(x+3)2-2x2 D.y=1- x2

9、若函数 是二次函数,那么m的值是( )

A.2 B.-1或3 C.3 D.

10、一块草地是长80 m、宽60 m的矩形,在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值范围.


最新北师大九年级二次函数教案相关文章:

最新北师大版九年级数学上册教案模板

二次函数数学教案范文

初中生的数学教案模板

北师大版九年级下800字语文作文

北师大版九年级上册作文怎么写600字

最新北师大九年级二次函数教案

经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。一起看看最新北师大九年级二次函数教案!欢迎查阅!北师大九年级二次函数教案1(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方
推荐度:
点击下载文档文档为doc格式
552385