最新数学教案优秀范文

若水1152 分享 时间:

  教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是小编为大家收集了有关数学教案,希望你们能喜欢,。

  最新数学教案优秀范文一

  教学目标:

  知识与技能目标:

  通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。

  培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。

  过程与方法目标:

  经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。

  情感态度与价值观目标:

  1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

  2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:

  经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。

  难点:

  确立等量关系,列出正确的二元一次方程组。

  教学流程:

  课前回顾

  复习:列一元一次方程解应用题的一般步骤

  情境引入

  探究1:今有鸡兔同笼,

  上有三十五头,

  下有九十四足,

  问鸡兔各几何?

  “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?

  (1)画图法

  用表示头,先画35个头

  将所有头都看作鸡的,用表示腿,画出了70只腿

  还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿

  四条腿的是兔子(12只),两条腿的是鸡(23只)

  (2)一元一次方程法:

  鸡头+兔头=35

  鸡脚+兔脚=94

  设鸡有x只,则兔有(35-x)只,据题意得:

  2x+4(35-x)=94

  比算术法容易理解

  想一想:那我们能不能用更简单的方法来解决这些问题呢?

  回顾上节课学习过的二元一次方程,能不能解决这一问题?

  (3)二元一次方程法

  今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

  (1)上有三十五头的意思是鸡、兔共有头35个,

  下有九十四足的意思是鸡、兔共有脚94只.

  (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;

  鸡足有2x只;兔足有4y只.

  解:设笼中有鸡x只,有兔y只,由题意可得:

  鸡兔合计头xy35足2x4y94

  解此方程组得:

  练习1:

  1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15

  2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.

  三、合作探究

  探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?

  题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?

  找出等量关系:

  解:设绳长x尺,井深y尺,则由题意得

  x=48

  将x=48y=11。

  所以绳长4811尺。

  想一想:找出一种更简单的创新解法吗?

  引导学生逐步得出更简单的方法:

  找出等量关系:

  (井深+5)×3=绳长

  (井深+1

  解:设绳长x尺,井深y尺,则由题意得

  3(y+5)=x

  4(y+1)=x

  x=48

  y=11

  所以绳长48尺,井深11尺。

  练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).

  归纳:

  列二元一次方程解决实际问题的一般步骤:

  审:审清题目中的等量关系.

  设:设未知数.

  列:根据等量关系,列出方程组.

  解:解方程组,求出未知数.

  答:检验所求出未知数是否符合题意,写出答案.

  四、自主思考

  探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?

  解:设做竖式纸盒X个,横式纸盒y个。根据题意,得

  x+2y=1000

  4x+3y=2000

  解这个方程组得x=200

  y=400

  答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。

  练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?

  解:设做竖式纸盒x个,做横式纸盒y个,根据题意

  y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完.

  归纳:

  五、达标测评

  1.解下列应用题

  (1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?

  解:设4分邮票x张,8分邮票y张,由题意得:

  4x+8y=6800①

  y-x=40②

  所以,4分邮票540张,8分邮票580张

  (2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天

  的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成

  分析:由于工作总量未知,我们将其设为单位1

  晴天一天可完成

  雨天一天可完成

  解:设晴天x天,雨天y天,工作总量为单位1,由题意得:

  总天数:7+10=17

  所以,共17天可完成任务

  六、应用提高

  学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?

  分析:铅笔数量+圆珠笔数量+钢笔数量=232

  铅笔数量=圆珠笔数量×4

  铅笔价格+圆珠笔价格+钢笔价格=300

  解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:

  将②代入①和③中,得二元一次方程组

  4y+y+z=232④

  0.6×4y+2.7x+6.3z=300⑤

  解得

  所以,铅笔175支,圆珠笔44支,钢笔12支

  七、体验收获

  1.解决鸡兔同笼问题

  2.解决以绳测井问题

  3.解应用题的一般步骤

  七、布置作业

  教材116页习题第2、3题。

  x+y=35

  2x+4y=94

  x=23

  y=12

  绳长的三分之一-井深=5

  绳长的四分之一-井深=1

  -y=5①

  ①-②,得

  -y=1②

  -y=5①

  -y=5①

  -y=5①

  X=540

  Y=580

  y-x=3②

  x=7

  y=10

  x+y+z=232①

  x=4y②

  0.6x+2.7y+6.3z=300③

  X=176

  Y=44

  Z=12

  最新数学教案优秀范文二

  一.教学目标:

  1.认知目标:

  1)了解二元一次方程组的概念。

  2)理解二元一次方程组的解的概念。

  3)会用列表尝试的方法找二元一次方程组的解。

  2.能力目标:

  1)渗透把实际问题抽象成数学模型的思想。

  2)通过尝试求解,培养学生的探索能力。

  3.情感目标:

  1)培养学生细致,认真的学习习惯。

  2)在积极的教学评价中,促进师生的情感交流。

  二.教学重难点

  重点:二元一次方程组及其解的概念

  难点:用列表尝试的方法求出方程组的解。

  三.教学过程

  (一)创设情景,引入课题

  1.本班共有40人,请问能确定男——各几人吗?为什么?

  (1)如果设本班男生x人,——y人,用方程如何表示?(x+y=40)

  (2)这是什么方程?根据什么?

  2.男生比——多了2人。设男生x人_y人.方程如何表示?x,y的值是多少?

  3.本班男生比——多2人且男——共40人.设该班男生x人_y人。方程如何表示?

  两个方程中的x表示什么?类似的两个方程中的y都表示?

  象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

  4.点明课题:二元一次方程组。

  [设计意图:从学生身边取数据,让他们感受到生活中处处有数学]

  (二)探究新知,练习巩固

  1.二元一次方程组的概念

  (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

  [让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

  (2)练习:判断下列是不是二元一次方程组:

  x+y=3,x+y=200,

  2x-3=7,3x+4y=3

  y+z=5,x=y+10,

  2y+1=5,4x-y2=2

  学生作出判断并要说明理由。

  2.二元一次方程组的解的概念

  (1)由学生给出引例的答案,教师指出这就是此方程组的解。

  (2)练习:把下列各组数的题序填入图中适当的位置:

  x=1;x=-2;x=;-x=

  y=0;y=2;y=1;y=

  方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

  2x+3y=2

  (3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

  (4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

  y=0.55x+2a=2y

  (三)合作探索,尝试求解

  现在我们一起来探索如何寻找方程组的解呢?

  1.已知两个整数x,y,试找出方程组3x+y=8的解.

  2x+3y=10

  学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

  提炼方法:列表尝试法。

  一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

  [把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验.]

  2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

  (1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

  由学生独立完成,并分析讲解。

  (四)课堂小结,布置作业

  1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)

  2.你还有什么问题或想法需要和大家交流?

  3.作业本。

  教学设计说明:

  1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

  2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

  3.本课在设计时对教材也进行了适当改动。例题方面考虑到数——时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

  最新数学教案优秀范文三

  题目:比较高矮。

  活动目标:

  1、教会幼儿区别高矮,初步掌握高矮的相对关系。

  2、教幼儿一些简单的比较方法,发展幼儿观察、比较、判断能力。

  活动准备:

  1、课件-数学:3-3比较概念 3-4比较概念 3-5比较概念。

  2、日常生活中能比较高矮的实物若干。

  活动过程:

  一、教幼儿区别高矮和一样高

  1.课件:3-3比较概念

  让幼儿通过观察比较,找出图画物体的不同点:

  两栋楼房,一栋楼房高,一栋楼房矮。

  两座房子,一座房子高,一座房子矮。

  两个厨子,一个厨子高,一个厨子矮。

  两个梯子,一个梯子高,一个梯子矮。

  2.逐一出示实物,让幼儿比一比,谁高谁矮,还是一样高。

  3.请两个小朋友上来比比谁高谁矮,还是一样高,

  再请全体幼儿互相比比,谁高谁矮,还是一样高。

  4.请幼儿说说自己熟悉的东西中什么是可以比较高矮的。

  二、教幼儿一些比较高矮的方法

  1.请一高一矮两个小朋友,矮的站在凳子上,

  前面用一块布遮住,让幼儿判断,谁高谁矮。

  当幼儿发生错觉时,揭开谜底,并告诉幼儿比较高矮时要把物体放在同一高度。

  2.课件:3-4比较概念

  让幼儿判断物体最高、最矮。

  三栋楼,哪栋楼最高?哪栋楼最矮?

  三棵树,哪棵树最高?哪棵树最矮?

  3.课件:3-5比较概念

  看一看图片上有谁?

  公鸡,狗,长颈鹿,猫,小鸡。

  比一比它们谁最高?谁最矮?

  谁比谁高?谁比谁矮?

  三、告诉幼儿简单的高矮的相对关系

  1.请一高一矮两个小朋友比较,

  再让高的小朋友跟老师比较,

  让矮的跟更矮的小朋友比较,

  使幼儿知道:高的小朋友跟矮的小朋友比是高的,跟老师比是矮的,

  矮的小朋友跟高的小朋友比是矮的,但跟更矮的小朋友比是高的。

  告诉幼儿单独的某样东西是不能定高矮的,要看它跟什么比较。

  2.请三个小朋友上来,再请一个幼儿为他们从高到矮排队,

  并说出谁高谁矮,谁比谁高,谁比谁矮。

  四、幼儿实践操作

  请每个幼儿依次画高矮不同的三棵树(或三栋楼等)。
 


关文章:

1.数学教案

2.小学数学教案万能模板

 

 

最新数学教案优秀范文

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是小编为大家收集了有关数学教案
推荐度:
点击下载文档文档为doc格式
250084