高二数学必修五知识点精选总结5篇

若水1147 分享 时间:

直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。下面就是小编给大家带来的高二数学必修五知识点总结,希望能帮助到大家!

高二数学必修五知识点总结1

一元二次不等式解法:

(1)化成标准式:;(2)求出对应的一元二次方程的根;

(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。

线性规划问题:

1.了解线性约束条件、目标函数、可行域、可行解、解

2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题.

3.解线性规划实际问题的步骤:

(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。

两类主要的目标函数的几何意义:

①-----直线的截距;②-----两点的距离或圆的半径;

均值定理:若,,则,即.;

称为正数、的算术平均数,称为正数、的几何平均数.

均值定理的应用:设、都为正数,则有

⑴若(和为定值),则当时,积取得值.

⑵若(积为定值),则当时,和取得最小值.

注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。

高二数学必修五知识点总结2

解三角形

1. ?

2.解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?

3.三角形面积公式 ,如三角形的三边是 ,面积是?

4.求角的几种问题: ,求

△面积是 ,求 . ,求cosc

5.一些术语名词:仰角(俯角),方位角,视角分别是什么?

6.三角形的三个内角a,b,c成等差数列,则 三角形的三边a,b,c成等差数列,则

三角形的三边a,b,c成等比数列,则 ,你会证明这三个结论么?

数列

★★1.一个重要的关系 注意验证 与 等不等?如已知

2. 为等差

为等比

注:等比数列有一个非常重要的关系:所有的奇(偶)数项 .如{an}是等比数列,且

★★3.等差数列常用的性质:

①下标和相等的两项和相等,如 是方程 的两根,则

②在等差数列中, ……成等差数列,如在等差数列中,

③若一个项数为奇数的等差数列,则 , ------

4.数列的项问题一定是要研究该数列是怎么变化的?(数列的单调性)——研究 的大小。

数列的(小)和问题,

如:等差数列中, ,则 时的n= .等差数列中, ,则 时的n=

5.数列求和的方法:

①公式法:等差数列的前5项和为15,后5项和为25,且 ★②分组求和法:

★③裂项求和法——两种情况的数列用:

★★④错位相减法——等差比数列(如 )——如何错位?相减要注意什么?最后不要忘记什么?

6.求通项的方法

①运用关系式 ★②累加(如 )

★③累乘(如

★★④构造新数列——如 ,a1=1,求an=?

高二数学必修五知识点总结3

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,0.1,0.01,0.001,0.000 1,…所构成的数列1,1.4,1.41,1.414,1.414 2,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

高二数学必修五知识点总结4

1、数列的定义及数列的通项公式:

①. anf(n),数列是定义域为N

的函数f(n),当n依次取1,2,时的一列函数值 ② i.归纳法

若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm

Snf(an)

iv. 若Snf(an),先求a

1得到关于an1和an的递推关系式

Sf(a)n1n1Sn2an1

例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an

Sn12an11

2.等差数列:

① 定义:a

n1an=d(常数),证明数列是等差数列的重要工具。 ② 通项d0时,an为关于n的一次函数;

d>0时,an为单调递增数列;d<0时,a

n为单调递减数列。

n(n1)2

③ 前nna1

d,

d0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。

④ 性质: ii. 若an为等差数列,则am,amk,am2k,…仍为等差数列。 iii. 若an为等差数列,则Sn,S2nSn,S3nS2n,…仍为等差数列。 iv 若A为a,b的等差中项,则有A3.等比数列:

① 定义:

an1an

q(常数),是证明数列是等比数列的重要工具。

ab2

② 通项时为常数列)。

③.前n项和

需特别注意,公比为字母时要讨论.

④.性质:

第2 / 4页

ii.an为等比数列,则am,amk,am2k,仍为等比数列

,公比为qk。

iii. an为等比数列,则Sn,S2nSn,S3nS2n,K仍为等比数列,公比为qn。 iv.G为a,b的等比中项,Gab 4.数列求和的常用方法:

①.公式法:如an2n3,an3n1

②.分组求和法:如an3n2n12n5,可分别求出3n,2n1和2n5的和,然后把三部分加起来即可。

1

如an3n2,

21111

Sn579(3n1)

2222

1

2

3

4

2

3

n1

n

1

3n2

2

n

n1

n

11111

Sn579…+3n13n2222222

1

2

3

n

n1

11111两式相减得:Sn52223n2

222222

,以下略。

如an

1nn1

1

1n

1n1

;an

1n1

n

n1n,

an

2n12n1

111

等。

22n12n1

⑤.倒序相加法.例:在1与2之间插入n个数a1,a

2,a3,,an,使这n+2个数成等差数列, 求:Sna1a2an,(答案:Sn

32n)

高二数学必修五知识点总结5

解三角形

1、三角形三角关系:A+B+C=180°;C=180°-(A+B);

2、三角形三边关系:a+b>c; a-b3、三角形中的基本关系:sin(AB)sinC,cos(AB)cosC,tan(AB)tanC, ABCABCABCcos,cossin,tancot 222222

4、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外abc2R. 接圆的半径,则有sinsinsinCsin

5、正弦定理的变形公式:

①化角为边:a2Rsin,b2Rsin,c2RsinC; abc,sin,sinC; 2R2R2R

abcabc③a:b:csin:sin:sinC;④. sinsinsinCsinsinsinC②化边为角:sin6、两类正弦定理解三角形的问题:

①已知两角和任意一边,求其他的两边及一角.

②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))

7、余弦定理:在C中,有abc2bccos,bac2accos, 222222c2a2b22abcosC.

b2c2a2a2c2b2a2b2c2

8、余弦定理的推论:cos,cos,cosC. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)

10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是C的角、、C

的对边,则:

①若abc,则C90;②若abc,则C90;

③若abc,则C90.

高二数学必修五知识点精选总结5篇相关文章:

1.高二数学必修五知识点总结归纳5篇

2.最新高二数学必修五知识点归纳精选五篇

3.高二数学必修五知识点梳理最新5篇

4.高二数学必修五知识点归纳大全5篇

5.高二数学必修五知识点总结归纳五篇分享

6.2020高二数学必修五重点知识点精选归纳5篇分享

7.精选高二数学必修五知识点归纳三篇

8.高二英语必修五最新重点知识点梳理五篇

9.2020最新高二数学知识点归纳总结5篇精选

10.高二数学知识点归纳整理分享五篇

高二数学必修五知识点精选总结5篇

直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识?
推荐度:
点击下载文档文档为doc格式
270393