高二数学必修五知识点精选总结5篇
直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。下面就是小编给大家带来的高二数学必修五知识点总结,希望能帮助到大家!
高二数学必修五知识点总结1
一元二次不等式解法:
(1)化成标准式:;(2)求出对应的一元二次方程的根;
(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。
线性规划问题:
1.了解线性约束条件、目标函数、可行域、可行解、解
2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题.
3.解线性规划实际问题的步骤:
(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。
两类主要的目标函数的几何意义:
①-----直线的截距;②-----两点的距离或圆的半径;
均值定理:若,,则,即.;
称为正数、的算术平均数,称为正数、的几何平均数.
均值定理的应用:设、都为正数,则有
⑴若(和为定值),则当时,积取得值.
⑵若(积为定值),则当时,和取得最小值.
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高二数学必修五知识点总结2
解三角形
1. ?
2.解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?
3.三角形面积公式 ,如三角形的三边是 ,面积是?
4.求角的几种问题: ,求
△面积是 ,求 . ,求cosc
5.一些术语名词:仰角(俯角),方位角,视角分别是什么?
6.三角形的三个内角a,b,c成等差数列,则 三角形的三边a,b,c成等差数列,则
三角形的三边a,b,c成等比数列,则 ,你会证明这三个结论么?
数列
★★1.一个重要的关系 注意验证 与 等不等?如已知
2. 为等差
为等比
注:等比数列有一个非常重要的关系:所有的奇(偶)数项 .如{an}是等比数列,且
★★3.等差数列常用的性质:
①下标和相等的两项和相等,如 是方程 的两根,则
②在等差数列中, ……成等差数列,如在等差数列中,
③若一个项数为奇数的等差数列,则 , ------
4.数列的项问题一定是要研究该数列是怎么变化的?(数列的单调性)——研究 的大小。
数列的(小)和问题,
如:等差数列中, ,则 时的n= .等差数列中, ,则 时的n=
5.数列求和的方法:
①公式法:等差数列的前5项和为15,后5项和为25,且 ★②分组求和法:
★③裂项求和法——两种情况的数列用:
★★④错位相减法——等差比数列(如 )——如何错位?相减要注意什么?最后不要忘记什么?
6.求通项的方法
①运用关系式 ★②累加(如 )
★③累乘(如
★★④构造新数列——如 ,a1=1,求an=?
高二数学必修五知识点总结3
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.000 1,…所构成的数列1,1.4,1.41,1.414,1.414 2,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
高二数学必修五知识点总结4
1、数列的定义及数列的通项公式:
①. anf(n),数列是定义域为N
的函数f(n),当n依次取1,2,时的一列函数值 ② i.归纳法
若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm
Snf(an)
iv. 若Snf(an),先求a
1得到关于an1和an的递推关系式
Sf(a)n1n1Sn2an1
例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an
Sn12an11
2.等差数列:
① 定义:a
n1an=d(常数),证明数列是等差数列的重要工具。 ② 通项d0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。
n(n1)2
③ 前nna1
d,
d0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。
④ 性质: ii. 若an为等差数列,则am,amk,am2k,…仍为等差数列。 iii. 若an为等差数列,则Sn,S2nSn,S3nS2n,…仍为等差数列。 iv 若A为a,b的等差中项,则有A3.等比数列:
① 定义:
an1an
q(常数),是证明数列是等比数列的重要工具。
ab2
。
② 通项时为常数列)。
③.前n项和
需特别注意,公比为字母时要讨论.
④.性质:
第2 / 4页
ii.an为等比数列,则am,amk,am2k,仍为等比数列
,公比为qk。
iii. an为等比数列,则Sn,S2nSn,S3nS2n,K仍为等比数列,公比为qn。 iv.G为a,b的等比中项,Gab 4.数列求和的常用方法:
①.公式法:如an2n3,an3n1
②.分组求和法:如an3n2n12n5,可分别求出3n,2n1和2n5的和,然后把三部分加起来即可。
1
③
如an3n2,
21111
Sn579(3n1)
2222
1
2
3
4
2
3
n1
n
1
3n2
2
n
n1
n
11111
Sn579…+3n13n2222222
1
2
3
n
n1
11111两式相减得:Sn52223n2
222222
,以下略。
④
如an
1nn1
1
1n
1n1
;an
1n1
n
n1n,
an
2n12n1
111
等。
22n12n1
⑤.倒序相加法.例:在1与2之间插入n个数a1,a
2,a3,,an,使这n+2个数成等差数列, 求:Sna1a2an,(答案:Sn
32n)
高二数学必修五知识点总结5
解三角形
1、三角形三角关系:A+B+C=180°;C=180°-(A+B);
2、三角形三边关系:a+b>c; a-b3、三角形中的基本关系:sin(AB)sinC,cos(AB)cosC,tan(AB)tanC, ABCABCABCcos,cossin,tancot 222222
4、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外abc2R. 接圆的半径,则有sinsinsinCsin
5、正弦定理的变形公式:
①化角为边:a2Rsin,b2Rsin,c2RsinC; abc,sin,sinC; 2R2R2R
abcabc③a:b:csin:sin:sinC;④. sinsinsinCsinsinsinC②化边为角:sin6、两类正弦定理解三角形的问题:
①已知两角和任意一边,求其他的两边及一角.
②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、余弦定理:在C中,有abc2bccos,bac2accos, 222222c2a2b22abcosC.
b2c2a2a2c2b2a2b2c2
8、余弦定理的推论:cos,cos,cosC. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)
9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)
10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是C的角、、C
的对边,则:
①若abc,则C90;②若abc,则C90;
③若abc,则C90.
高二数学必修五知识点精选总结5篇相关文章:
高二数学必修五知识点精选总结5篇
上一篇:高二数学必修五知识点总结归纳五篇