高一必修一数学知识点归纳5篇精选

若水1147 分享 时间:

   高一数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是小编给大家带来的高一数学必修一知识点,希望能帮助到大家大家!

        高一必修一数学知识点1

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  高一必修一数学知识点2

  一、集合

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_或N+整数集Z有理数集Q实数集R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC

  ④如果AB同时BA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n个元素的集合,含有2n个子集,2n-1个真子集

  二、函数

  1、函数定义域、值域求法综合

  2.、函数奇偶性与单调性问题的解题策略

  3、恒成立问题的求解策略

  4、反函数的几种题型及方法

  5、二次函数根的问题——一题多解

  &指数函数y=a^x

  a^a_a^b=a^a+b(a>0,a、b属于Q)

  (a^a)^b=a^ab(a>0,a、b属于Q)

  (ab)^a=a^a_b^a(a>0,a、b属于Q)

  指数函数对称规律:

  1、函数y=a^x与y=a^-x关于y轴对称

  2、函数y=a^x与y=-a^x关于x轴对称

  3、函数y=a^x与y=-a^-x关于坐标原点对称

  &对数函数y=loga^x

  如果,且,,,那么:

  ○1•+;

  ○2-;

  ○3.

  注意:换底公式

  (,且;,且;).

  幂函数y=x^a(a属于R)

  1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

  (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

  (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

  即:方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  ○1(代数法)求方程的实数根;

  ○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

  (2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

  三、平面向量

  向量:既有大小,又有方向的量.

  数量:只有大小,没有方向的量.

  有向线段的三要素:起点、方向、长度.

  零向量:长度为的向量.

  单位向量:长度等于个单位的向量.

  相等向量:长度相等且方向相同的向量

  &向量的运算

  加法运算

  AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

  对于零向量和任意向量a,有:0+a=a+0=a。

  |a+b|≤|a|+|b|。

  向量的加法满足所有的加法运算定律。

  减法运算

  与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

  (1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  数乘运算

  实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。

  设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法运算、减法运算、数乘运算统称线性运算。

  向量的数量积

  已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

  a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

  两个向量的数量积等于它们对应坐标的乘积的和。

  四、三角函数

  1、善于用“1“巧解题

  2、三角问题的非三角化解题策略

  3、三角函数有界性求最值解题方法

  4、三角函数向量综合题例析

  5、三角函数中的数学思想方法

  高一必修一数学知识点3

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b(k为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b.

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1.当时间t一定,距离s是速度v的一次函数。s=vt.

  2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S.g=S-ft.

  六、常用公式:(不全,希望有人补充)

  1.求函数图像的k值:(y1-y2)/(x1-x2)

  2.求与x轴平行线段的中点:|x1-x2|/2

  3.求与y轴平行线段的中点:|y1-y2|/2

  4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)

  高一必修一数学知识点4

  指数函数

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数_。

  高一必修一数学知识点5

  一:集合的含义与表示

  1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

  把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

  2、集合的中元素的三个特性:

  (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

  (2)元素的互异性:一个给定集合中的元素是的,不可重复的。

  (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

  3、集合的表示:{…}

  (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  a、列举法:将集合中的元素一一列举出来{a,b,c……}

  b、描述法:

  ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

  {xR|x-3>2},{x|x-3>2}

  ②语言描述法:例:{不是直角三角形的三角形}

  ③Venn图:画出一条封闭的曲线,曲线里面表示集合。

  4、集合的分类:

  (1)有限集:含有有限个元素的集合

  (2)无限集:含有无限个元素的集合

  (3)空集:不含任何元素的集合

  5、元素与集合的关系:

  (1)元素在集合里,则元素属于集合,即:aA

  (2)元素不在集合里,则元素不属于集合,即:a¢A

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_或N+

  整数集Z

  有理数集Q

  实数集R

  6、集合间的基本关系

  (1).“包含”关系(1)—子集

  定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

  二、函数的概念

  函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.

  (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

  (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  函数的三要素:定义域、值域、对应法则

  函数的表示方法:(1)解析法:明确函数的定义域

  (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

  (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

  4、函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

  (3)函数图像平移变换的特点:

  1)加左减右——————只对x

  2)上减下加——————只对y

  3)函数y=f(x)关于X轴对称得函数y=-f(x)

  4)函数y=f(x)关于Y轴对称得函数y=f(-x)

  5)函数y=f(x)关于原点对称得函数y=-f(-x)

  6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得

  函数y=|f(x)|

  7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

  三、函数的基本性质

  1、函数解析式子的求法

  (1、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2、求函数的解析式的主要方法有:

  1)代入法:

  2)待定系数法:

  3)换元法:

  4)拼凑法:

  2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)

  4、区间的概念:

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示

  5、值域(先考虑其定义域)

  (1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;

  (2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。

  (3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。

  (4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。

  6.分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  (4)常用的分段函数有取整函数、符号函数、含绝对值的函数

  7.映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A---B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)---B(象)”

  对于映射f:A→B来说,则应满足:

  (1)集合A中的每一个元素,在集合B中都有象,并且象是的;

  (2)集合A中不同的元素,在集合B中对应的象可以是同一个;

  (3)不要求集合B中的每一个元素在集合A中都有原象。

  注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数

  8、函数的单调性(局部性质)及最值

  (1、增减函数

  (1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  (2)如果对于区间D上的任意两个自变量的值x1,x2,当x1

  注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种

  (2、图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

  (3、函数单调区间与单调性的判定方法

  (A)定义法:

  任取x1,x2∈D,且x1

  作差f(x1)-f(x2);

  变形(通常是因式分解和配方);

  定号(即判断差f(x1)-f(x2)的正负);

  下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

  9:函数的奇偶性(整体性质)

  (1、偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2、奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3、具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;

  b、确定f(-x)与f(x)的关系;

  c、作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;

  若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

  (4)利用奇偶函数的四则运算以及复合函数的奇偶性

  a、在公共定义域内,偶函数的加减乘除仍为偶函数;

  奇函数的加减仍为奇函数;

  奇数个奇函数的乘除认为奇函数;

  偶数个奇函数的乘除为偶函数;

  一奇一偶的乘积是奇函数;

  a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。

  注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

  (1)再根据定义判定;

  (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

  (3)利用定理,或借助函数的图象判定.

  10、函数最值及性质的应用

  (1、函数的最值

  a利用二次函数的性质(配方法)求函数的(小)值

  b利用图象求函数的(小)值

  c利用函数单调性的判断函数的(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

  (2、函数的奇偶性与单调性

  奇函数在关于原点对称的区间上有相同的单调性;

  偶函数在关于原点对称的区间上有相反的单调性。

  (3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。

  (4)绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。

  (5)在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。


 

1.精选高一数学知识点总结归纳5篇

2.最全高一数学知识点归纳5篇

3.精选最新高一数学知识点总结归纳5篇

4.高一数学知识点大全5篇

5.最新高一数学知识点5篇总结

高一必修一数学知识点归纳5篇精选

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
255288