学习资料库 > 学习资料 > 高中 > 高二 > 高二数学知识点总结精选5篇

高二数学知识点总结精选5篇

若水1147 分享 时间:

高二数学知识点总结精选5篇

  高二数学是很多同学的噩梦,知识点众多而且杂,对于高二的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。下面就是小编给大家带来的高二数学知识点,希望能帮助到大家!

       高二数学知识点1

  等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

  高二数学知识点2

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  高二数学知识点3

  (1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

  顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所

  指定的操作。

  (2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的

  算法结构。

  条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行

  A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

  (3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

  ①一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

  ②另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

  注意:

  1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。

  2在循环结构中都有一个计数变量和累

  加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次

  高二数学知识点4

  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

  3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

  1.重点:理解辗转相除法与更相减损术的原理,会求两个数的公约数;理解秦九韶算法原理,会求一元多项式的值;会对一组数据按照一定的规则进行排序;理解进位制,能进行各种进位制之间的转化.

  2.难点:秦九韶算法求一元多项式的值及各种进位制之间的转化.

  3.重难点:理解辗转相除法与更相减损术、秦九韶算法原理、排序方法、进位制之间的转化方法.

  高二数学知识点5

  1.计数原理知识点

  ①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

  2.排列(有序)与组合(无序)

  Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

  Cnm=n!/(n-m)!m!

  Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k•k!=(k+1)!-k!

  3.排列组合混合题的解题原则:先选后排,先分再排

  排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

  捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

  插空法(解决相间问题)间接法和去杂法等等

  在求解排列与组合应用问题时,应注意:

  (1)把具体问题转化或归结为排列或组合问题;

  (2)通过分析确定运用分类计数原理还是分步计数原理;

  (3)分析题目条件,避免“选取”时重复和遗漏;

  (4)列出式子计算和作答.

  经常运用的数学思想是:

  ①分类讨论思想;②转化思想;③对称思想.

  4.二项式定理知识点:

  ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

  ②主要性质和主要结论:对称性Cnm=Cnn-m

  二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

  所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇数项二项式系数的和=偶数项而是系数的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

  ③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

  5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

  6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

254398