《分数除法》数学教案设计
《分数除法》数学教案设计
一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。首先对每一个课题的教学内容要有一个整体的把握。下面就是小编给大家带来的《分数除法》数学教案设计,希望能帮助到大家!
《分数除法》教案(一)
教学目标
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。 2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能 力。 教学重点: 弄清单位“1”的量,会分析题中的数量关系。 教学:难点: 分数除法应用题的特点及解题思路和解题方法。
教学重难点
教学重点: 弄清单位“1”的量,会分析题中的数量关系。
教学:难点: 分数除法应用题的特点及解题思路和解题方法。
教学过程
一、复习
出示复习题:
1、下面各题中应该把哪个量看作单位“1”?
2、用方程解下列各题。
3、根据测定,成人体内的水分约占体重的 2/3,而儿童体内的水分约占体重的4/5 ,六年级学生小明的体重为35千克,他体内的水分有多少千克?
让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重×4/5 =体内水分的重量 。
4、指名口头列式计算。课件出示。
二、新授
1、教学例1
根据测定,成人体内的水分约占体重的 2/3 ,而儿童
体内的水分约占体重的 4/5 ,小明体内有28千克水分,
他的体重是爸爸体重的 7/15 ,小明的体重是多少千克?
爸爸的体重是多少千克?
例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。 小明的体重× 4/5 =体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?
(相同点是它们的数量关系是一样的;不同点是 水分28千克, 水分占体重的4/ 5 。 体重 ?千克 水分28千克 已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系 式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。
先在小组内独立解答。
课件演示计算的算式。
(根据数量关系式:小明的体重×4/ 5 =体内水分的重量,
反过来,体内水分的重量÷4/ 5 =小明的体重)。
2、解决第二个问题:小明的体重是爸爸的7/15 ,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)
爸爸:
小明:
根据数量关系式: 爸爸的体重×7/15 =小明的体重
小明的体重÷7/ 15 =爸爸的体重
①解方程:解:设爸爸的体重是χ千克。
7/ 15 χ=35
χ=35÷7/15
χ=75
②算术解: 35÷7/15 =75(千克)
课件演示计算的算式。
3、用方程解应用题应注意哪些问题
首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间
的等量关系,再确定设哪个量为χ ,并列出方程.
4、巩固练习:P38“做一做”课件出示:
学校有科普读物320本,占全部图书的 2/5 ,科普读物相当于故事书的 4/3 ,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、巩固应用
1、小明看一本课外读物,周末看了35页,正好是这本书的 5/7 ,这本课外读物一共有多少页?
(先分析数量关系式,然后确定单位“1”,最后再进行解答。)
2、一杯约250ml的鲜牛奶大约含有 3/10 g的钙质,占一个成年人一天所需钙质的 3/8 。一个成年人一天大约需要多少钙质?
(注意引导学生发现250ml的鲜牛奶是多余条件)
3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的 40/57 ,宇宙飞船的速度是多少?
(引导学生先分析数量关系式,然后确定单位“1”,再根据数量 关系式进行计算)
4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的 3/5 ,小军家每月开支大约是多少元?
独立完成后订正。
四、课堂总结
这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
《分数除法》教案(二)
教学目标
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学工具
多媒体课件,圆形纸片,剪刀
教学过程
一、 创设情境,导入新课,
师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)
1.师:今天老师就带来了8个小蛋糕 把8个小蛋糕平均分给4个人吃,每人分得多少个?
怎么列式? 生:8÷4=2(个)
2.师:把8个小蛋糕变成1个大蛋糕 把1个大蛋糕平均分给4个人吃,每人分得多少个?
怎么列式? 生:1÷4=
二、 动手操作,探索新知
1、探索一个物体平均分,体会分数与除法的关系。
(1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个? 生动手折纸,思考
生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕
(2)师:把1个蛋糕平均分给3个人,每人分得多少多少个? 怎么列式?
生独立思考并回答。
全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数 ( )来表示。所以 1÷3 = ( )(个)
2、探索多个物体平均分,体会分数与除法的关系。
师:把3个蛋糕平均分给4个人,每人分得多少个?
师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。
(1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。
方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个( 1/4 )张拼在一起得到 (3/4 )个。
方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个 ( 1/4 )个,拼在一起得到 ( 3/4 )个。
(2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。 即:3 ÷ 4 = ( )(个)(板书)
(3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4
(4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。
学生汇报,明确: 5个蛋糕的1/7就是1个蛋糕的5/7,即:5 ÷ 7 = 5/7 (个) (板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式? 学生思考后回答 :3 ÷ 5 = 3/5 (根)(课件演示)
3、总结概括分数与除法之间的关系。
1÷4= (个) 3÷4= (个)
5÷7= (个) 3÷5= (个)
师:观察黑板上的这些算式,你发现了什么?
三、观察算式,概括分数与除法的关系。
(1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。
(2)生汇报: 我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。
师强调:相当于
(3)师:请每个同学看着这些算式说一说分数与除法的关系。
(师板书): 被除数÷除数=被除数/除数
提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?
生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。
(4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b= a/b
讨论:用字母表示分数与除法的关系, b是否可以是任何数? 为什么? 补充板书(b≠0) 师板书 : a÷b= a/b ( b≠0) 提问:为什么b≠0? (因为除数不能为0,所以b不能为0。)
师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)
小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。
三、练习巩固应用
1、你能很快说出这些算式的商吗?3÷8 = 5÷9= 7÷13= 4÷7= 40÷56= 12÷61=
2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?
把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?
四、全课小结 今天这堂课你有什么收获?还有什么问题吗?
相关文章: