八年级数学全套知识点归纳

若水0 分享 时间:

在现实学习生活中,不管我们学什么,都需要掌握一些知识点,知识点也可以通俗的理解为重要的内容。下面小编给大家带来八年级数学全套知识点归纳,希望大家喜欢!

八年级数学全套知识点归纳

一.定义

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数。

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方。

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根,求一个数的立方根的运算,叫做开立方。

4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数。

5.无限不循环小数又叫无理数。

6.有理数和无理数统称实数。

7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的。

二.重点

1.平方与开平方互为逆运算。

2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根。

3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位。

4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位。

5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0。

三.注意

1.被开方数一定是非负数。

2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0。

3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式。

初二数学必考知识点总结

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

初二下册每一章数学知识点总结

1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。

2.其他形式 xy=k (k为常数,k≠0)都是。

3.图像:反比例函数的图像属于双曲线。

反比例函数的图象既是轴对称图形又是中心对称图形。

有两条对称轴:直线y=x和 y=-x。 对称中心是:原点

3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴

所作的垂线段与两坐标轴围成的矩形的面积。

第十八章 勾股定理

1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

第十九章 四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;

平行四边形的对角相等。

平行四边形的对角线互相平分初二下册每一章数学知识点总结初二下册每一章数学知识点总结。

平行四边形的判定 1.两组对边分别相等的四边形是平行四边形

2.对角线互相平分的四边形是平行四边形;

3.两组对角分别相等的四边形是平行四边形;

4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质: 矩形的四个角都是直角;

矩形的对角线平分且相等。AC=BD

矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义 :邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;

菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

正方形判定定理:1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是 (约为0.618)的矩形叫做黄金矩形初二下册每一章数学知识点总结初中辅导。

第二十章 数据的分析

1.算术平均数:

2.加权平均数:加权平均数的计算公式。

权的理解:反映了某个数据在整个数据中的重要程度。

而是以比的或百分比的形式出现及频数分布表求加权平均数的方法

3.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4.一组数据中出现次数最多的数据就是这组数据的众数(mode)。

5.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流

7. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

八年级数学全套知识点归纳相关文章:

高二数学知识点重点梳理最新5篇精选

初三数学知识点提纲整理

数学高考知识点2020最新归纳【5篇】

数学复习知识点归纳分享高二

小学五升六数学知识点

最新高二数学知识点精选总结5篇

数学高考必考知识点归纳分享

初中九年级数学知识点总结

高二最新数学必考知识点总结大全分享

高二数学知识点精选总结【五篇】

八年级数学全套知识点归纳

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
1131262